{"title":"在奖励反转学习任务中,脑皮层深部刺激增强了神经计算基底神经节模型中的习惯性行为","authors":"Oliver Maith, Dave Apenburg, Fred Hamker","doi":"10.1111/ejn.70130","DOIUrl":null,"url":null,"abstract":"<p>Deep brain stimulation (DBS) within the basal ganglia is a widely used therapeutic intervention for neurological disorders; however, its precise mechanisms of action remain unclear. This study investigates how DBS may affect decision-making processes through computational modeling of the basal ganglia. A rate-coded model incorporating direct, indirect, and hyperdirect pathways was utilized alongside a cortico-thalamic shortcut known for promoting habitual behavior. Simulations of a two-choice reward reversal learning task were conducted to replicate data from patients with dystonia in ON and OFF DBS conditions. We demonstrate that plasticity in the cortico-thalamic shortcut, which bypasses the basal ganglia, is crucial for reproducing the patients' behavioral data, emphasizing the role of habit formation. Simulated DBS increased habitual behavior following reward reversal. Integrating different DBS mechanisms revealed that suppression of stimulated neurons, stimulation of efferent axons, and a combined variant promoted habitual behavior. Analyses of thalamic inputs showed that, despite differing effects on the model's activity and plasticity, these DBS variants consistently reduced the influence of the basal ganglia while enhancing the role of the cortico-thalamic shortcut. Notably, the DBS variants were distinguishable by their divergent behavioral effects following discontinued stimulation. These findings underscore the potential multifaceted effects of DBS on decision-making processes. In particular, our model proposes that DBS modulates the balance between reward-guided and habitual behavior.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"61 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejn.70130","citationCount":"0","resultStr":"{\"title\":\"Pallidal Deep Brain Stimulation Enhances Habitual Behavior in a Neuro-Computational Basal Ganglia Model During a Reward Reversal Learning Task\",\"authors\":\"Oliver Maith, Dave Apenburg, Fred Hamker\",\"doi\":\"10.1111/ejn.70130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep brain stimulation (DBS) within the basal ganglia is a widely used therapeutic intervention for neurological disorders; however, its precise mechanisms of action remain unclear. This study investigates how DBS may affect decision-making processes through computational modeling of the basal ganglia. A rate-coded model incorporating direct, indirect, and hyperdirect pathways was utilized alongside a cortico-thalamic shortcut known for promoting habitual behavior. Simulations of a two-choice reward reversal learning task were conducted to replicate data from patients with dystonia in ON and OFF DBS conditions. We demonstrate that plasticity in the cortico-thalamic shortcut, which bypasses the basal ganglia, is crucial for reproducing the patients' behavioral data, emphasizing the role of habit formation. Simulated DBS increased habitual behavior following reward reversal. Integrating different DBS mechanisms revealed that suppression of stimulated neurons, stimulation of efferent axons, and a combined variant promoted habitual behavior. Analyses of thalamic inputs showed that, despite differing effects on the model's activity and plasticity, these DBS variants consistently reduced the influence of the basal ganglia while enhancing the role of the cortico-thalamic shortcut. Notably, the DBS variants were distinguishable by their divergent behavioral effects following discontinued stimulation. These findings underscore the potential multifaceted effects of DBS on decision-making processes. In particular, our model proposes that DBS modulates the balance between reward-guided and habitual behavior.</p>\",\"PeriodicalId\":11993,\"journal\":{\"name\":\"European Journal of Neuroscience\",\"volume\":\"61 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejn.70130\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70130\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70130","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Pallidal Deep Brain Stimulation Enhances Habitual Behavior in a Neuro-Computational Basal Ganglia Model During a Reward Reversal Learning Task
Deep brain stimulation (DBS) within the basal ganglia is a widely used therapeutic intervention for neurological disorders; however, its precise mechanisms of action remain unclear. This study investigates how DBS may affect decision-making processes through computational modeling of the basal ganglia. A rate-coded model incorporating direct, indirect, and hyperdirect pathways was utilized alongside a cortico-thalamic shortcut known for promoting habitual behavior. Simulations of a two-choice reward reversal learning task were conducted to replicate data from patients with dystonia in ON and OFF DBS conditions. We demonstrate that plasticity in the cortico-thalamic shortcut, which bypasses the basal ganglia, is crucial for reproducing the patients' behavioral data, emphasizing the role of habit formation. Simulated DBS increased habitual behavior following reward reversal. Integrating different DBS mechanisms revealed that suppression of stimulated neurons, stimulation of efferent axons, and a combined variant promoted habitual behavior. Analyses of thalamic inputs showed that, despite differing effects on the model's activity and plasticity, these DBS variants consistently reduced the influence of the basal ganglia while enhancing the role of the cortico-thalamic shortcut. Notably, the DBS variants were distinguishable by their divergent behavioral effects following discontinued stimulation. These findings underscore the potential multifaceted effects of DBS on decision-making processes. In particular, our model proposes that DBS modulates the balance between reward-guided and habitual behavior.
期刊介绍:
EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.