Sanchari Chowdhury, Vivek Chandrakant Wakchure, El Czar Galleposo, Davide Bonifazi, Rubén D. Costa
{"title":"染料敏化太阳能电池用氰硼嗪光敏剂","authors":"Sanchari Chowdhury, Vivek Chandrakant Wakchure, El Czar Galleposo, Davide Bonifazi, Rubén D. Costa","doi":"10.1002/aesr.202400344","DOIUrl":null,"url":null,"abstract":"<p>Implementing novel metal-free and strongly absorbing donor–acceptor sensitizers without carboxylic acid anchoring groups are still a frontier in dye-sensitized solar cells (DSSCs). Herein, the facile synthesis of a strongly absorbing sensitizer combining three 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) anchoring moieties with a borazine core instead of the classical cyano anchoring groups, such as tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE), and the dimethyl-phenyl amino donor group, is disclosed. This results in a 1.6-fold increase in solar energy conversion efficiency compared to DSSCs with the reference sensitizers (TCBD-dimethyl-amino-phenyl core) and the prior art cyano-sensitizers with TCNE and TCNG anchors. The advantages of the TCBD-borazine design are twofold: 1) threefold increase in absorption extinction coefficient as well as 2) a reduction in back electron transfer and aggregation behavior upon dye adsorption onto the semiconducting electrode, resulting in 45% and 23% improvement in open-circuit voltage (<i>V</i><sub>oc</sub>) and short-circuit current density (<i>J</i><sub>sc</sub>), respectively, compared to those of the prior art. Overall, this work highlights an easy-to-design of cyano-sensitizer that results in a significant improvement of solar energy conversion when using borazine frameworks for the first time.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 5","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400344","citationCount":"0","resultStr":"{\"title\":\"Cyano-Borazine Photosensitizers for Dye-Sensitized Solar Cells\",\"authors\":\"Sanchari Chowdhury, Vivek Chandrakant Wakchure, El Czar Galleposo, Davide Bonifazi, Rubén D. Costa\",\"doi\":\"10.1002/aesr.202400344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Implementing novel metal-free and strongly absorbing donor–acceptor sensitizers without carboxylic acid anchoring groups are still a frontier in dye-sensitized solar cells (DSSCs). Herein, the facile synthesis of a strongly absorbing sensitizer combining three 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) anchoring moieties with a borazine core instead of the classical cyano anchoring groups, such as tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE), and the dimethyl-phenyl amino donor group, is disclosed. This results in a 1.6-fold increase in solar energy conversion efficiency compared to DSSCs with the reference sensitizers (TCBD-dimethyl-amino-phenyl core) and the prior art cyano-sensitizers with TCNE and TCNG anchors. The advantages of the TCBD-borazine design are twofold: 1) threefold increase in absorption extinction coefficient as well as 2) a reduction in back electron transfer and aggregation behavior upon dye adsorption onto the semiconducting electrode, resulting in 45% and 23% improvement in open-circuit voltage (<i>V</i><sub>oc</sub>) and short-circuit current density (<i>J</i><sub>sc</sub>), respectively, compared to those of the prior art. Overall, this work highlights an easy-to-design of cyano-sensitizer that results in a significant improvement of solar energy conversion when using borazine frameworks for the first time.</p>\",\"PeriodicalId\":29794,\"journal\":{\"name\":\"Advanced Energy and Sustainability Research\",\"volume\":\"6 5\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400344\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy and Sustainability Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Cyano-Borazine Photosensitizers for Dye-Sensitized Solar Cells
Implementing novel metal-free and strongly absorbing donor–acceptor sensitizers without carboxylic acid anchoring groups are still a frontier in dye-sensitized solar cells (DSSCs). Herein, the facile synthesis of a strongly absorbing sensitizer combining three 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) anchoring moieties with a borazine core instead of the classical cyano anchoring groups, such as tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE), and the dimethyl-phenyl amino donor group, is disclosed. This results in a 1.6-fold increase in solar energy conversion efficiency compared to DSSCs with the reference sensitizers (TCBD-dimethyl-amino-phenyl core) and the prior art cyano-sensitizers with TCNE and TCNG anchors. The advantages of the TCBD-borazine design are twofold: 1) threefold increase in absorption extinction coefficient as well as 2) a reduction in back electron transfer and aggregation behavior upon dye adsorption onto the semiconducting electrode, resulting in 45% and 23% improvement in open-circuit voltage (Voc) and short-circuit current density (Jsc), respectively, compared to those of the prior art. Overall, this work highlights an easy-to-design of cyano-sensitizer that results in a significant improvement of solar energy conversion when using borazine frameworks for the first time.
期刊介绍:
Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields.
In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including:
CAS: Chemical Abstracts Service (ACS)
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (Clarivate Analytics)
INSPEC (IET)
Web of Science (Clarivate Analytics).