Ferdinando Napolitano, Luca De Siena, Ortensia Amoroso, Thorbjörg Ágústsdóttir, Ásdís Benediktsdóttir, Mauro Palo, Vala Hjörleifsdóttir, Paolo Capuano
{"title":"冰岛西南部恒吉尔高温地热区的散射与吸收成像","authors":"Ferdinando Napolitano, Luca De Siena, Ortensia Amoroso, Thorbjörg Ágústsdóttir, Ásdís Benediktsdóttir, Mauro Palo, Vala Hjörleifsdóttir, Paolo Capuano","doi":"10.1029/2024JB030731","DOIUrl":null,"url":null,"abstract":"<p>We applied 3D scattering and absorption imaging to the Hengill volcanic area (southwest Iceland), where high-enthalpy geothermal reservoirs are presently harnessed. These techniques have shown the potential for detecting magmatic intrusions and fluid reservoirs in volcanic regions. Here, we target seismic scattering and absorption as proxies of the elastic and anelastic properties of the crust to understand their potential in areas of geothermal energy extraction. The harnessed Nesjavellir geothermal field was used as a benchmark to extend interpretation into non-harnessed areas and provide better insight when evaluating exploitable geo-resources. Shallow, high-scattering anomalies mark the sub-vertical Hengill fissure swarm. Deeper low-scattering volumes likely highlight sub-horizontal magmatic intrusions beneath the Hengill central volcano, whose less fractured volume acts as a barrier for the surrounding seismicity. At Nesjavellir, high absorption co-located with high scattering volumes spatially correlates with previously detected high Vp/Vs volumes, suggesting the existence of fluid- and/or melt-filled complex seismically active networks of faults and fractures. Our results suggest the presence of geothermal reservoirs in non-harnessed areas (Mosfellsheiði and Ölkelduháls) shown by similar high-absorption anomalies at depths comparable with the Nesjavellir geothermal resource. Scattering and absorption imaging complement more standard imaging techniques, improving interpretation in geothermal resource exploration.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB030731","citationCount":"0","resultStr":"{\"title\":\"Scattering and Absorption Imaging of the Hengill High-Temperature Geothermal Area, Southwest Iceland\",\"authors\":\"Ferdinando Napolitano, Luca De Siena, Ortensia Amoroso, Thorbjörg Ágústsdóttir, Ásdís Benediktsdóttir, Mauro Palo, Vala Hjörleifsdóttir, Paolo Capuano\",\"doi\":\"10.1029/2024JB030731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We applied 3D scattering and absorption imaging to the Hengill volcanic area (southwest Iceland), where high-enthalpy geothermal reservoirs are presently harnessed. These techniques have shown the potential for detecting magmatic intrusions and fluid reservoirs in volcanic regions. Here, we target seismic scattering and absorption as proxies of the elastic and anelastic properties of the crust to understand their potential in areas of geothermal energy extraction. The harnessed Nesjavellir geothermal field was used as a benchmark to extend interpretation into non-harnessed areas and provide better insight when evaluating exploitable geo-resources. Shallow, high-scattering anomalies mark the sub-vertical Hengill fissure swarm. Deeper low-scattering volumes likely highlight sub-horizontal magmatic intrusions beneath the Hengill central volcano, whose less fractured volume acts as a barrier for the surrounding seismicity. At Nesjavellir, high absorption co-located with high scattering volumes spatially correlates with previously detected high Vp/Vs volumes, suggesting the existence of fluid- and/or melt-filled complex seismically active networks of faults and fractures. Our results suggest the presence of geothermal reservoirs in non-harnessed areas (Mosfellsheiði and Ölkelduháls) shown by similar high-absorption anomalies at depths comparable with the Nesjavellir geothermal resource. Scattering and absorption imaging complement more standard imaging techniques, improving interpretation in geothermal resource exploration.</p>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"130 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB030731\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030731\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030731","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Scattering and Absorption Imaging of the Hengill High-Temperature Geothermal Area, Southwest Iceland
We applied 3D scattering and absorption imaging to the Hengill volcanic area (southwest Iceland), where high-enthalpy geothermal reservoirs are presently harnessed. These techniques have shown the potential for detecting magmatic intrusions and fluid reservoirs in volcanic regions. Here, we target seismic scattering and absorption as proxies of the elastic and anelastic properties of the crust to understand their potential in areas of geothermal energy extraction. The harnessed Nesjavellir geothermal field was used as a benchmark to extend interpretation into non-harnessed areas and provide better insight when evaluating exploitable geo-resources. Shallow, high-scattering anomalies mark the sub-vertical Hengill fissure swarm. Deeper low-scattering volumes likely highlight sub-horizontal magmatic intrusions beneath the Hengill central volcano, whose less fractured volume acts as a barrier for the surrounding seismicity. At Nesjavellir, high absorption co-located with high scattering volumes spatially correlates with previously detected high Vp/Vs volumes, suggesting the existence of fluid- and/or melt-filled complex seismically active networks of faults and fractures. Our results suggest the presence of geothermal reservoirs in non-harnessed areas (Mosfellsheiði and Ölkelduháls) shown by similar high-absorption anomalies at depths comparable with the Nesjavellir geothermal resource. Scattering and absorption imaging complement more standard imaging techniques, improving interpretation in geothermal resource exploration.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.