Rafael Fleischman, Max Grischek, Jiahuan Zhang, Florian Scheler, Georgios E. Arnaoutakis, Mark Khenkin, Carolin Ulbrich, Steve Albrecht, Eugene A. Katz
{"title":"金属卤化物钙钛矿的光致发光降解:聚光原位研究是否可行?","authors":"Rafael Fleischman, Max Grischek, Jiahuan Zhang, Florian Scheler, Georgios E. Arnaoutakis, Mark Khenkin, Carolin Ulbrich, Steve Albrecht, Eugene A. Katz","doi":"10.1002/solr.202500027","DOIUrl":null,"url":null,"abstract":"<p>Photoluminescence (PL) spectroscopy is a valuable tool fordegradation studies of perovskite-based photovoltaic materials. The wavelength-sensitive nature of the photo-induced processes implies a preference for sunlight as the photo-excitation source for such PL studies. This study reports on the design and experimental validation of a new setup for the in situ study of PL degradation in metal halide perovskites using concentrated natural sunlight in a wide range of solar concentrations and sample temperatures. The system allows the sample to be excited with the entire solar spectrum while successfully filtering undesired reflected sunlight using two orthogonal polarization filters. Depending on temperature and solar concentration, we observed three types of perovskite PL behavior: stable PL response, without degradation; reversible PL degradation with stable ultraviolet–visible light absorption; and nonreversible PL degradation accompanied with the variation of light absorption.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 9","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500027","citationCount":"0","resultStr":"{\"title\":\"Photoluminescence Degradation in Metal Halide Perovskites: Is In-Situ Study with Concentrated Sunlight Possible?\",\"authors\":\"Rafael Fleischman, Max Grischek, Jiahuan Zhang, Florian Scheler, Georgios E. Arnaoutakis, Mark Khenkin, Carolin Ulbrich, Steve Albrecht, Eugene A. Katz\",\"doi\":\"10.1002/solr.202500027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photoluminescence (PL) spectroscopy is a valuable tool fordegradation studies of perovskite-based photovoltaic materials. The wavelength-sensitive nature of the photo-induced processes implies a preference for sunlight as the photo-excitation source for such PL studies. This study reports on the design and experimental validation of a new setup for the in situ study of PL degradation in metal halide perovskites using concentrated natural sunlight in a wide range of solar concentrations and sample temperatures. The system allows the sample to be excited with the entire solar spectrum while successfully filtering undesired reflected sunlight using two orthogonal polarization filters. Depending on temperature and solar concentration, we observed three types of perovskite PL behavior: stable PL response, without degradation; reversible PL degradation with stable ultraviolet–visible light absorption; and nonreversible PL degradation accompanied with the variation of light absorption.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 9\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500027\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500027","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Photoluminescence Degradation in Metal Halide Perovskites: Is In-Situ Study with Concentrated Sunlight Possible?
Photoluminescence (PL) spectroscopy is a valuable tool fordegradation studies of perovskite-based photovoltaic materials. The wavelength-sensitive nature of the photo-induced processes implies a preference for sunlight as the photo-excitation source for such PL studies. This study reports on the design and experimental validation of a new setup for the in situ study of PL degradation in metal halide perovskites using concentrated natural sunlight in a wide range of solar concentrations and sample temperatures. The system allows the sample to be excited with the entire solar spectrum while successfully filtering undesired reflected sunlight using two orthogonal polarization filters. Depending on temperature and solar concentration, we observed three types of perovskite PL behavior: stable PL response, without degradation; reversible PL degradation with stable ultraviolet–visible light absorption; and nonreversible PL degradation accompanied with the variation of light absorption.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.