通过结构、热学和机器学习增强电介质分析纳米环氧复合材料的特性

IF 2.6 4区 化学 Q3 POLYMER SCIENCE
Sanketsinh Thakor, Prince Jain, Anand Joshi, Chandan R. Vaja, Swapnil Parikh, Piyush Panchal
{"title":"通过结构、热学和机器学习增强电介质分析纳米环氧复合材料的特性","authors":"Sanketsinh Thakor,&nbsp;Prince Jain,&nbsp;Anand Joshi,&nbsp;Chandan R. Vaja,&nbsp;Swapnil Parikh,&nbsp;Piyush Panchal","doi":"10.1007/s10965-025-04410-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to comprehensively explore the characteristics of hybrid nano fillers incorporated epoxy composites (NFIEC) using various analytical techniques. The research encompasses machine learning-enhanced dielectric analysis across a wide frequency spectrum ranging from 100 Hz to 2 MHz. The structural properties of the nano-fillers, pristine epoxy (PE), and NFIEC are investigated through X-ray Diffraction (XRD). Hybrid nano fillers, including combinations like SiO<sub>2</sub> + Fe<sub>3</sub>O<sub>4</sub>, ZnO + Fe<sub>3</sub>O<sub>4</sub>, TiO<sub>2</sub> + Fe<sub>3</sub>O<sub>4</sub> and Al<sub>2</sub>O<sub>3</sub> + Fe<sub>3</sub>O<sub>4</sub>, are added to the PE at a concentration of 1 wt.% to form NFIEC. Additionally, Differential Scanning Calorimetry are employed to gain further insights into the thermal behaviour of the NFIEC. This study also demonstrates the effectiveness of machine learning models, particularly Extra Trees, CatBoost, XGBoost, and Ensemble Averaging, in predicting dielectric properties (ε′ and ε′′) of NFIEC using data from LCR and VNA measurements. The models exhibited high predictive accuracy, with Ensemble Averaging consistently delivering robust performance across datasets, highlighting the potential of ML techniques in advancing material science by reducing experimental efforts and enhancing predictive precision.\n</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"32 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of nanoepoxy composite through structural, thermal and machine learning-enhanced dielectric analysis\",\"authors\":\"Sanketsinh Thakor,&nbsp;Prince Jain,&nbsp;Anand Joshi,&nbsp;Chandan R. Vaja,&nbsp;Swapnil Parikh,&nbsp;Piyush Panchal\",\"doi\":\"10.1007/s10965-025-04410-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aims to comprehensively explore the characteristics of hybrid nano fillers incorporated epoxy composites (NFIEC) using various analytical techniques. The research encompasses machine learning-enhanced dielectric analysis across a wide frequency spectrum ranging from 100 Hz to 2 MHz. The structural properties of the nano-fillers, pristine epoxy (PE), and NFIEC are investigated through X-ray Diffraction (XRD). Hybrid nano fillers, including combinations like SiO<sub>2</sub> + Fe<sub>3</sub>O<sub>4</sub>, ZnO + Fe<sub>3</sub>O<sub>4</sub>, TiO<sub>2</sub> + Fe<sub>3</sub>O<sub>4</sub> and Al<sub>2</sub>O<sub>3</sub> + Fe<sub>3</sub>O<sub>4</sub>, are added to the PE at a concentration of 1 wt.% to form NFIEC. Additionally, Differential Scanning Calorimetry are employed to gain further insights into the thermal behaviour of the NFIEC. This study also demonstrates the effectiveness of machine learning models, particularly Extra Trees, CatBoost, XGBoost, and Ensemble Averaging, in predicting dielectric properties (ε′ and ε′′) of NFIEC using data from LCR and VNA measurements. The models exhibited high predictive accuracy, with Ensemble Averaging consistently delivering robust performance across datasets, highlighting the potential of ML techniques in advancing material science by reducing experimental efforts and enhancing predictive precision.\\n</p></div>\",\"PeriodicalId\":658,\"journal\":{\"name\":\"Journal of Polymer Research\",\"volume\":\"32 5\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10965-025-04410-3\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-025-04410-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用各种分析技术全面探讨复合纳米填料环氧复合材料(NFIEC)的特性。该研究包括在100 Hz至2 MHz的宽频谱范围内进行机器学习增强的介电分析。通过x射线衍射(XRD)研究了纳米填料、原始环氧树脂(PE)和NFIEC的结构性能。将SiO2 + Fe3O4、ZnO + Fe3O4、TiO2 + Fe3O4和Al2O3 + Fe3O4等杂化纳米填料以1wt .%的浓度加入PE中形成NFIEC。此外,差示扫描量热法被用于进一步了解NFIEC的热行为。该研究还证明了机器学习模型,特别是Extra Trees、CatBoost、XGBoost和Ensemble Averaging在使用LCR和VNA测量数据预测NFIEC介电特性(ε’和ε’)方面的有效性。这些模型显示出很高的预测精度,集成平均在数据集上持续提供强大的性能,通过减少实验工作和提高预测精度,突出了机器学习技术在推进材料科学方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristics of nanoepoxy composite through structural, thermal and machine learning-enhanced dielectric analysis

This study aims to comprehensively explore the characteristics of hybrid nano fillers incorporated epoxy composites (NFIEC) using various analytical techniques. The research encompasses machine learning-enhanced dielectric analysis across a wide frequency spectrum ranging from 100 Hz to 2 MHz. The structural properties of the nano-fillers, pristine epoxy (PE), and NFIEC are investigated through X-ray Diffraction (XRD). Hybrid nano fillers, including combinations like SiO2 + Fe3O4, ZnO + Fe3O4, TiO2 + Fe3O4 and Al2O3 + Fe3O4, are added to the PE at a concentration of 1 wt.% to form NFIEC. Additionally, Differential Scanning Calorimetry are employed to gain further insights into the thermal behaviour of the NFIEC. This study also demonstrates the effectiveness of machine learning models, particularly Extra Trees, CatBoost, XGBoost, and Ensemble Averaging, in predicting dielectric properties (ε′ and ε′′) of NFIEC using data from LCR and VNA measurements. The models exhibited high predictive accuracy, with Ensemble Averaging consistently delivering robust performance across datasets, highlighting the potential of ML techniques in advancing material science by reducing experimental efforts and enhancing predictive precision.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Polymer Research
Journal of Polymer Research 化学-高分子科学
CiteScore
4.70
自引率
7.10%
发文量
472
审稿时长
3.6 months
期刊介绍: Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology. As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including: polymer synthesis; polymer reactions; polymerization kinetics; polymer physics; morphology; structure-property relationships; polymer analysis and characterization; physical and mechanical properties; electrical and optical properties; polymer processing and rheology; application of polymers; supramolecular science of polymers; polymer composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信