G. Arnone, F. Capone, R. De Luca, J. A. Gianfrani, F. Iovanna
{"title":"Jeffreys流体中通流解的渐近行为","authors":"G. Arnone, F. Capone, R. De Luca, J. A. Gianfrani, F. Iovanna","doi":"10.1007/s00161-025-01384-x","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper, a consistent model for non-isothermal viscoelastic fluid of Jeffreys type forming a horizontal layer heated from below is introduced and the stability of a vertical constant throughflow is analyzed. Planes delimiting the layer are assumed isothermal, rigid and permeable. Via linear analysis, it is proved that the strength of the vertical throughflow affects the number of modes leading to the onset of oscillatory instability and that motions originating at the onset of instability are oscillating in time for strong enough throughflows, regardless the impact of the fading memory behavior. Moreover, viscoelastic fluids with elastic properties are more likely to sustain oscillatory instability compared to more viscous ones, even though the Rayleigh number required for instability is higher. A sufficient condition for nonlinear stability of the throughflow has been obtained, by introducing a suitable <span>\\(L^2\\)</span>-norm.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"37 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00161-025-01384-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behaviour of throughflow solutions in the class of Jeffreys fluids\",\"authors\":\"G. Arnone, F. Capone, R. De Luca, J. A. Gianfrani, F. Iovanna\",\"doi\":\"10.1007/s00161-025-01384-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present paper, a consistent model for non-isothermal viscoelastic fluid of Jeffreys type forming a horizontal layer heated from below is introduced and the stability of a vertical constant throughflow is analyzed. Planes delimiting the layer are assumed isothermal, rigid and permeable. Via linear analysis, it is proved that the strength of the vertical throughflow affects the number of modes leading to the onset of oscillatory instability and that motions originating at the onset of instability are oscillating in time for strong enough throughflows, regardless the impact of the fading memory behavior. Moreover, viscoelastic fluids with elastic properties are more likely to sustain oscillatory instability compared to more viscous ones, even though the Rayleigh number required for instability is higher. A sufficient condition for nonlinear stability of the throughflow has been obtained, by introducing a suitable <span>\\\\(L^2\\\\)</span>-norm.</p></div>\",\"PeriodicalId\":525,\"journal\":{\"name\":\"Continuum Mechanics and Thermodynamics\",\"volume\":\"37 3\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00161-025-01384-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continuum Mechanics and Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00161-025-01384-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-025-01384-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Asymptotic behaviour of throughflow solutions in the class of Jeffreys fluids
In the present paper, a consistent model for non-isothermal viscoelastic fluid of Jeffreys type forming a horizontal layer heated from below is introduced and the stability of a vertical constant throughflow is analyzed. Planes delimiting the layer are assumed isothermal, rigid and permeable. Via linear analysis, it is proved that the strength of the vertical throughflow affects the number of modes leading to the onset of oscillatory instability and that motions originating at the onset of instability are oscillating in time for strong enough throughflows, regardless the impact of the fading memory behavior. Moreover, viscoelastic fluids with elastic properties are more likely to sustain oscillatory instability compared to more viscous ones, even though the Rayleigh number required for instability is higher. A sufficient condition for nonlinear stability of the throughflow has been obtained, by introducing a suitable \(L^2\)-norm.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.