利用ELT的安第斯光谱仪进行开创性的系外行星科学研究

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Enric Palle, Katia Biazzo, Emeline Bolmont, Paul Mollière, Katja Poppenhaeger, Jayne Birkby, Matteo Brogi, Gael Chauvin, Andrea Chiavassa, Jens Hoeijmakers, Emmanuel Lellouch, Christophe Lovis, Roberto Maiolino, Lisa Nortmann, Hannu Parviainen, Lorenzo Pino, Martin Turbet, Jesse Weder, Simon Albrecht, Simone Antoniucci, Susana C. Barros, Andre Beaudoin, Bjorn Benneke, Isabelle Boisse, Aldo S. Bonomo, Francesco Borsa, Alexis Brandeker, Wolfgang Brandner, Lars A. Buchhave, Anne-Laure Cheffot, Robin Deborde, Florian Debras, Rene Doyon, Paolo Di Marcantonio, Paolo Giacobbe, Jonay I. González Hernández, Ravit Helled, Laura Kreidberg, Pedro Machado, Jesus Maldonado, Alessandro Marconi, B. L. Canto Martins, Adriano Miceli, Christoph Mordasini, Mamadou N’Diaye, Andrzej Niedzielski, Brunella Nisini, Livia Origlia, Celine Peroux, Alexander G. M. Pietrow, Enrico Pinna, Emily Rauscher, Sabine Reffert, Cristina Rodríguez-López, Philippe Rousselot, Nicoletta Sanna, Nuno C. Santos, Adrien Simonnin, Alejandro Suárez Mascareño, Alessio Zanutta, Maria Rosa Zapatero-Osorio, Mathias Zechmeister
{"title":"利用ELT的安第斯光谱仪进行开创性的系外行星科学研究","authors":"Enric Palle,&nbsp;Katia Biazzo,&nbsp;Emeline Bolmont,&nbsp;Paul Mollière,&nbsp;Katja Poppenhaeger,&nbsp;Jayne Birkby,&nbsp;Matteo Brogi,&nbsp;Gael Chauvin,&nbsp;Andrea Chiavassa,&nbsp;Jens Hoeijmakers,&nbsp;Emmanuel Lellouch,&nbsp;Christophe Lovis,&nbsp;Roberto Maiolino,&nbsp;Lisa Nortmann,&nbsp;Hannu Parviainen,&nbsp;Lorenzo Pino,&nbsp;Martin Turbet,&nbsp;Jesse Weder,&nbsp;Simon Albrecht,&nbsp;Simone Antoniucci,&nbsp;Susana C. Barros,&nbsp;Andre Beaudoin,&nbsp;Bjorn Benneke,&nbsp;Isabelle Boisse,&nbsp;Aldo S. Bonomo,&nbsp;Francesco Borsa,&nbsp;Alexis Brandeker,&nbsp;Wolfgang Brandner,&nbsp;Lars A. Buchhave,&nbsp;Anne-Laure Cheffot,&nbsp;Robin Deborde,&nbsp;Florian Debras,&nbsp;Rene Doyon,&nbsp;Paolo Di Marcantonio,&nbsp;Paolo Giacobbe,&nbsp;Jonay I. González Hernández,&nbsp;Ravit Helled,&nbsp;Laura Kreidberg,&nbsp;Pedro Machado,&nbsp;Jesus Maldonado,&nbsp;Alessandro Marconi,&nbsp;B. L. Canto Martins,&nbsp;Adriano Miceli,&nbsp;Christoph Mordasini,&nbsp;Mamadou N’Diaye,&nbsp;Andrzej Niedzielski,&nbsp;Brunella Nisini,&nbsp;Livia Origlia,&nbsp;Celine Peroux,&nbsp;Alexander G. M. Pietrow,&nbsp;Enrico Pinna,&nbsp;Emily Rauscher,&nbsp;Sabine Reffert,&nbsp;Cristina Rodríguez-López,&nbsp;Philippe Rousselot,&nbsp;Nicoletta Sanna,&nbsp;Nuno C. Santos,&nbsp;Adrien Simonnin,&nbsp;Alejandro Suárez Mascareño,&nbsp;Alessio Zanutta,&nbsp;Maria Rosa Zapatero-Osorio,&nbsp;Mathias Zechmeister","doi":"10.1007/s10686-025-10000-4","DOIUrl":null,"url":null,"abstract":"<div><p>In the past decade the study of exoplanet atmospheres at high-spectral resolution, via transmission/emission spectroscopy and cross-correlation techniques for atomic/molecular mapping, has become a powerful and consolidated methodology. The current limitation is the signal-to-noise ratio that one can obtain during a planetary transit, which is in turn ultimately limited by telescope size. This limitation will be overcome by ANDES, an optical and near-infrared high-resolution spectrograph for the Extremely Large Telescope, which is currently in Phase B development. ANDES will be a powerful transformational instrument for exoplanet science. It will enable the study of giant planet atmospheres, allowing not only an exquisite determination of atmospheric composition, but also the study of isotopic compositions, dynamics and weather patterns, mapping the planetary atmospheres and probing atmospheric formation and evolution models. The unprecedented angular resolution of ANDES, will also allow us to explore the initial conditions in which planets form in proto-planetary disks. The main science case of ANDES, however, is the study of small, rocky exoplanet atmospheres, including the potential for biomarker detections, and the ability to reach this science case is driving its instrumental design. Here we discuss our simulations and the observing strategies to achieve this specific science goal. Since ANDES will be operational at the same time as NASA’s JWST and ESA’s ARIEL missions, it will provide enormous synergies in the characterization of planetary atmospheres at high and low spectral resolution. Moreover, ANDES will be able to probe for the first time the atmospheres of several giant and small planets in reflected light. In particular, we show how ANDES will be able to unlock the reflected light atmospheric signal of a golden sample of nearby non-transiting habitable zone earth-sized planets within a few tenths of nights, a scientific objective that no other currently approved astronomical facility will be able to reach.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-025-10000-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Ground-breaking exoplanet science with the ANDES spectrograph at the ELT\",\"authors\":\"Enric Palle,&nbsp;Katia Biazzo,&nbsp;Emeline Bolmont,&nbsp;Paul Mollière,&nbsp;Katja Poppenhaeger,&nbsp;Jayne Birkby,&nbsp;Matteo Brogi,&nbsp;Gael Chauvin,&nbsp;Andrea Chiavassa,&nbsp;Jens Hoeijmakers,&nbsp;Emmanuel Lellouch,&nbsp;Christophe Lovis,&nbsp;Roberto Maiolino,&nbsp;Lisa Nortmann,&nbsp;Hannu Parviainen,&nbsp;Lorenzo Pino,&nbsp;Martin Turbet,&nbsp;Jesse Weder,&nbsp;Simon Albrecht,&nbsp;Simone Antoniucci,&nbsp;Susana C. Barros,&nbsp;Andre Beaudoin,&nbsp;Bjorn Benneke,&nbsp;Isabelle Boisse,&nbsp;Aldo S. Bonomo,&nbsp;Francesco Borsa,&nbsp;Alexis Brandeker,&nbsp;Wolfgang Brandner,&nbsp;Lars A. Buchhave,&nbsp;Anne-Laure Cheffot,&nbsp;Robin Deborde,&nbsp;Florian Debras,&nbsp;Rene Doyon,&nbsp;Paolo Di Marcantonio,&nbsp;Paolo Giacobbe,&nbsp;Jonay I. González Hernández,&nbsp;Ravit Helled,&nbsp;Laura Kreidberg,&nbsp;Pedro Machado,&nbsp;Jesus Maldonado,&nbsp;Alessandro Marconi,&nbsp;B. L. Canto Martins,&nbsp;Adriano Miceli,&nbsp;Christoph Mordasini,&nbsp;Mamadou N’Diaye,&nbsp;Andrzej Niedzielski,&nbsp;Brunella Nisini,&nbsp;Livia Origlia,&nbsp;Celine Peroux,&nbsp;Alexander G. M. Pietrow,&nbsp;Enrico Pinna,&nbsp;Emily Rauscher,&nbsp;Sabine Reffert,&nbsp;Cristina Rodríguez-López,&nbsp;Philippe Rousselot,&nbsp;Nicoletta Sanna,&nbsp;Nuno C. Santos,&nbsp;Adrien Simonnin,&nbsp;Alejandro Suárez Mascareño,&nbsp;Alessio Zanutta,&nbsp;Maria Rosa Zapatero-Osorio,&nbsp;Mathias Zechmeister\",\"doi\":\"10.1007/s10686-025-10000-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the past decade the study of exoplanet atmospheres at high-spectral resolution, via transmission/emission spectroscopy and cross-correlation techniques for atomic/molecular mapping, has become a powerful and consolidated methodology. The current limitation is the signal-to-noise ratio that one can obtain during a planetary transit, which is in turn ultimately limited by telescope size. This limitation will be overcome by ANDES, an optical and near-infrared high-resolution spectrograph for the Extremely Large Telescope, which is currently in Phase B development. ANDES will be a powerful transformational instrument for exoplanet science. It will enable the study of giant planet atmospheres, allowing not only an exquisite determination of atmospheric composition, but also the study of isotopic compositions, dynamics and weather patterns, mapping the planetary atmospheres and probing atmospheric formation and evolution models. The unprecedented angular resolution of ANDES, will also allow us to explore the initial conditions in which planets form in proto-planetary disks. The main science case of ANDES, however, is the study of small, rocky exoplanet atmospheres, including the potential for biomarker detections, and the ability to reach this science case is driving its instrumental design. Here we discuss our simulations and the observing strategies to achieve this specific science goal. Since ANDES will be operational at the same time as NASA’s JWST and ESA’s ARIEL missions, it will provide enormous synergies in the characterization of planetary atmospheres at high and low spectral resolution. Moreover, ANDES will be able to probe for the first time the atmospheres of several giant and small planets in reflected light. In particular, we show how ANDES will be able to unlock the reflected light atmospheric signal of a golden sample of nearby non-transiting habitable zone earth-sized planets within a few tenths of nights, a scientific objective that no other currently approved astronomical facility will be able to reach.</p></div>\",\"PeriodicalId\":551,\"journal\":{\"name\":\"Experimental Astronomy\",\"volume\":\"59 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10686-025-10000-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10686-025-10000-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-025-10000-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,通过透射/发射光谱和相互关联技术进行的高光谱分辨率的系外行星大气研究已经成为一种强大而巩固的方法。目前的限制是在行星凌日过程中可以获得的信噪比,而这最终又受到望远镜尺寸的限制。这一限制将被安第斯(ANDES)所克服,这是一种用于超大望远镜的光学和近红外高分辨率光谱仪,目前正处于B阶段的开发阶段。安第斯将成为系外行星科学的强大变革性工具。它将使对巨行星大气的研究成为可能,不仅可以精确地确定大气成分,还可以研究同位素组成、动力学和天气模式,绘制行星大气图,探测大气形成和演化模型。安第斯望远镜前所未有的角度分辨率,也将使我们能够探索行星在原行星盘中形成的初始条件。然而,安第斯的主要科学案例是对小型岩石系外行星大气的研究,包括生物标志物检测的潜力,而达到这一科学案例的能力正在推动其仪器设计。在这里,我们讨论我们的模拟和观测策略,以实现这一特定的科学目标。由于ANDES将与NASA的JWST和ESA的ARIEL任务同时运行,它将在高光谱分辨率和低光谱分辨率的行星大气特征方面提供巨大的协同作用。此外,安第斯望远镜还将能够首次通过反射光探测几颗巨行星和小行星的大气层。特别是,我们展示了安第斯如何能够在几个十分之一的夜晚内解锁附近非过境宜居带地球大小的行星的黄金样本的反射光大气信号,这是一个目前没有其他批准的天文设施能够达到的科学目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ground-breaking exoplanet science with the ANDES spectrograph at the ELT

In the past decade the study of exoplanet atmospheres at high-spectral resolution, via transmission/emission spectroscopy and cross-correlation techniques for atomic/molecular mapping, has become a powerful and consolidated methodology. The current limitation is the signal-to-noise ratio that one can obtain during a planetary transit, which is in turn ultimately limited by telescope size. This limitation will be overcome by ANDES, an optical and near-infrared high-resolution spectrograph for the Extremely Large Telescope, which is currently in Phase B development. ANDES will be a powerful transformational instrument for exoplanet science. It will enable the study of giant planet atmospheres, allowing not only an exquisite determination of atmospheric composition, but also the study of isotopic compositions, dynamics and weather patterns, mapping the planetary atmospheres and probing atmospheric formation and evolution models. The unprecedented angular resolution of ANDES, will also allow us to explore the initial conditions in which planets form in proto-planetary disks. The main science case of ANDES, however, is the study of small, rocky exoplanet atmospheres, including the potential for biomarker detections, and the ability to reach this science case is driving its instrumental design. Here we discuss our simulations and the observing strategies to achieve this specific science goal. Since ANDES will be operational at the same time as NASA’s JWST and ESA’s ARIEL missions, it will provide enormous synergies in the characterization of planetary atmospheres at high and low spectral resolution. Moreover, ANDES will be able to probe for the first time the atmospheres of several giant and small planets in reflected light. In particular, we show how ANDES will be able to unlock the reflected light atmospheric signal of a golden sample of nearby non-transiting habitable zone earth-sized planets within a few tenths of nights, a scientific objective that no other currently approved astronomical facility will be able to reach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Astronomy
Experimental Astronomy 地学天文-天文与天体物理
CiteScore
5.30
自引率
3.30%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments. Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields. Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信