即时宇宙学

IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy
Nissan Itzhaki, Uri Peleg
{"title":"即时宇宙学","authors":"Nissan Itzhaki,&nbsp;Uri Peleg","doi":"10.1007/JHEP05(2025)026","DOIUrl":null,"url":null,"abstract":"<p>Instant Folded Strings (IFSs) are unconventional light strings that emerge when the string coupling increases with time. A particularly intriguing property of IFSs, especially relevant to cosmology, is that they violate the Null Energy Condition (NEC). In this paper, we begin to explore their cosmological effects. We find that NEC violation by IFSs is significantly suppressed in an expanding universe, leading to a universe that resembles our own, comprising matter, radiation, and dark energy. Upon closer examination, these components exhibit subtle, nonstandard traits that could be experimentally tested in the future. Notably, the origin of dark energy stems not only from the potential, as is usually the case, but also from the derivative of the potential with respect to the dilaton. This paves the way for a new approach to realizing inflation within string theory, addressing the Dine-Seiberg problem associated with dilaton stabilization, and perhaps even hinting at a novel mechanism to tackle the cosmological constant problem. Conversely, in a contracting universe, the effects of IFSs are amplified, making bouncing cosmologies a natural and prevalent outcome.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)026.pdf","citationCount":"0","resultStr":"{\"title\":\"Instant cosmology\",\"authors\":\"Nissan Itzhaki,&nbsp;Uri Peleg\",\"doi\":\"10.1007/JHEP05(2025)026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Instant Folded Strings (IFSs) are unconventional light strings that emerge when the string coupling increases with time. A particularly intriguing property of IFSs, especially relevant to cosmology, is that they violate the Null Energy Condition (NEC). In this paper, we begin to explore their cosmological effects. We find that NEC violation by IFSs is significantly suppressed in an expanding universe, leading to a universe that resembles our own, comprising matter, radiation, and dark energy. Upon closer examination, these components exhibit subtle, nonstandard traits that could be experimentally tested in the future. Notably, the origin of dark energy stems not only from the potential, as is usually the case, but also from the derivative of the potential with respect to the dilaton. This paves the way for a new approach to realizing inflation within string theory, addressing the Dine-Seiberg problem associated with dilaton stabilization, and perhaps even hinting at a novel mechanism to tackle the cosmological constant problem. Conversely, in a contracting universe, the effects of IFSs are amplified, making bouncing cosmologies a natural and prevalent outcome.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 5\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)026.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP05(2025)026\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)026","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

瞬时折叠弦(ifs)是一种非常规的光弦,当弦的耦合随时间增加时就会出现。ifs的一个特别有趣的特性,特别是与宇宙学相关的,是它们违反零能量条件(NEC)。在本文中,我们开始探索它们的宇宙学效应。我们发现,在膨胀的宇宙中,ifs对NEC的破坏被显著抑制,导致宇宙与我们的宇宙相似,由物质、辐射和暗能量组成。经过更仔细的检查,这些成分表现出微妙的、非标准的特征,这些特征可以在未来进行实验测试。值得注意的是,暗能量的起源不仅源于通常情况下的势,而且源于势相对于膨胀的导数。这为在弦理论中实现暴胀的新方法铺平了道路,解决了与膨胀稳定相关的Dine-Seiberg问题,甚至可能暗示了解决宇宙常数问题的新机制。相反,在收缩的宇宙中,ifs的影响被放大,使弹跳宇宙论成为一种自然而普遍的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instant cosmology

Instant Folded Strings (IFSs) are unconventional light strings that emerge when the string coupling increases with time. A particularly intriguing property of IFSs, especially relevant to cosmology, is that they violate the Null Energy Condition (NEC). In this paper, we begin to explore their cosmological effects. We find that NEC violation by IFSs is significantly suppressed in an expanding universe, leading to a universe that resembles our own, comprising matter, radiation, and dark energy. Upon closer examination, these components exhibit subtle, nonstandard traits that could be experimentally tested in the future. Notably, the origin of dark energy stems not only from the potential, as is usually the case, but also from the derivative of the potential with respect to the dilaton. This paves the way for a new approach to realizing inflation within string theory, addressing the Dine-Seiberg problem associated with dilaton stabilization, and perhaps even hinting at a novel mechanism to tackle the cosmological constant problem. Conversely, in a contracting universe, the effects of IFSs are amplified, making bouncing cosmologies a natural and prevalent outcome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信