{"title":"即时宇宙学","authors":"Nissan Itzhaki, Uri Peleg","doi":"10.1007/JHEP05(2025)026","DOIUrl":null,"url":null,"abstract":"<p>Instant Folded Strings (IFSs) are unconventional light strings that emerge when the string coupling increases with time. A particularly intriguing property of IFSs, especially relevant to cosmology, is that they violate the Null Energy Condition (NEC). In this paper, we begin to explore their cosmological effects. We find that NEC violation by IFSs is significantly suppressed in an expanding universe, leading to a universe that resembles our own, comprising matter, radiation, and dark energy. Upon closer examination, these components exhibit subtle, nonstandard traits that could be experimentally tested in the future. Notably, the origin of dark energy stems not only from the potential, as is usually the case, but also from the derivative of the potential with respect to the dilaton. This paves the way for a new approach to realizing inflation within string theory, addressing the Dine-Seiberg problem associated with dilaton stabilization, and perhaps even hinting at a novel mechanism to tackle the cosmological constant problem. Conversely, in a contracting universe, the effects of IFSs are amplified, making bouncing cosmologies a natural and prevalent outcome.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)026.pdf","citationCount":"0","resultStr":"{\"title\":\"Instant cosmology\",\"authors\":\"Nissan Itzhaki, Uri Peleg\",\"doi\":\"10.1007/JHEP05(2025)026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Instant Folded Strings (IFSs) are unconventional light strings that emerge when the string coupling increases with time. A particularly intriguing property of IFSs, especially relevant to cosmology, is that they violate the Null Energy Condition (NEC). In this paper, we begin to explore their cosmological effects. We find that NEC violation by IFSs is significantly suppressed in an expanding universe, leading to a universe that resembles our own, comprising matter, radiation, and dark energy. Upon closer examination, these components exhibit subtle, nonstandard traits that could be experimentally tested in the future. Notably, the origin of dark energy stems not only from the potential, as is usually the case, but also from the derivative of the potential with respect to the dilaton. This paves the way for a new approach to realizing inflation within string theory, addressing the Dine-Seiberg problem associated with dilaton stabilization, and perhaps even hinting at a novel mechanism to tackle the cosmological constant problem. Conversely, in a contracting universe, the effects of IFSs are amplified, making bouncing cosmologies a natural and prevalent outcome.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 5\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)026.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP05(2025)026\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)026","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Instant Folded Strings (IFSs) are unconventional light strings that emerge when the string coupling increases with time. A particularly intriguing property of IFSs, especially relevant to cosmology, is that they violate the Null Energy Condition (NEC). In this paper, we begin to explore their cosmological effects. We find that NEC violation by IFSs is significantly suppressed in an expanding universe, leading to a universe that resembles our own, comprising matter, radiation, and dark energy. Upon closer examination, these components exhibit subtle, nonstandard traits that could be experimentally tested in the future. Notably, the origin of dark energy stems not only from the potential, as is usually the case, but also from the derivative of the potential with respect to the dilaton. This paves the way for a new approach to realizing inflation within string theory, addressing the Dine-Seiberg problem associated with dilaton stabilization, and perhaps even hinting at a novel mechanism to tackle the cosmological constant problem. Conversely, in a contracting universe, the effects of IFSs are amplified, making bouncing cosmologies a natural and prevalent outcome.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).