{"title":"基于recN基因的RAA-CRISPR/Cas12a家畜及鲜肉猪链球菌现场检测系统的建立","authors":"Jian Yang, Wenjing Li, Yulian Hu, Yun Han, Changwei Lei, Hongning Wang","doi":"10.1007/s10142-025-01605-1","DOIUrl":null,"url":null,"abstract":"<div><p><i>Streptococcus suis</i> is a major bacterial pathogen in the swine industry, causing meningitis, arthritis, and other diseases in infected pigs. It also poses significant public health risks due to its zoonotic potential, particularly in individuals with skin lesions. Current detection methods, including traditional culture-based techniques and PCR assays, are time-consuming, labor-intensive, and lack sufficient accuracy. To address these limitations, this study aimed to develop a rapid and precise detection method for <i>S. suis</i>. By leveraging whole-genome sequencing (WGS) and multiple sequence alignment, the <i>recN</i> gene was identified as a highly specific molecular target. A novel isothermal detection method, integrating recombinase-aided amplification (RAA) with CRISPR/Cas12a, was subsequently established. This RAA-CRISPR/Cas12a-based system demonstrated superior sensitivity compared to conventional PCR (targeting the <i>gdh</i> gene), achieving detection within 30 min without requiring specialized equipment. This method achieves 2.44 × 10<sup>1</sup> copies/µL and 2.1 × 10<sup>1</sup> CFU sensitivity and 100% specificity within 30 min, outperforming conventional PCR in speed and reliability while eliminating dependency on specialized equipment. Designed for field applications, it offers a cost-effective (US$1/test), user-friendly solution for on-site <i>S. suis</i> detection in swine farms and fresh pork meat, enhancing outbreak control and preventive healthcare in the livestock industry.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment of a rapid RAA-CRISPR/Cas12a system targeting the recN gene for on-site detection of Streptococcus suis in livestock and fresh pork meat\",\"authors\":\"Jian Yang, Wenjing Li, Yulian Hu, Yun Han, Changwei Lei, Hongning Wang\",\"doi\":\"10.1007/s10142-025-01605-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><i>Streptococcus suis</i> is a major bacterial pathogen in the swine industry, causing meningitis, arthritis, and other diseases in infected pigs. It also poses significant public health risks due to its zoonotic potential, particularly in individuals with skin lesions. Current detection methods, including traditional culture-based techniques and PCR assays, are time-consuming, labor-intensive, and lack sufficient accuracy. To address these limitations, this study aimed to develop a rapid and precise detection method for <i>S. suis</i>. By leveraging whole-genome sequencing (WGS) and multiple sequence alignment, the <i>recN</i> gene was identified as a highly specific molecular target. A novel isothermal detection method, integrating recombinase-aided amplification (RAA) with CRISPR/Cas12a, was subsequently established. This RAA-CRISPR/Cas12a-based system demonstrated superior sensitivity compared to conventional PCR (targeting the <i>gdh</i> gene), achieving detection within 30 min without requiring specialized equipment. This method achieves 2.44 × 10<sup>1</sup> copies/µL and 2.1 × 10<sup>1</sup> CFU sensitivity and 100% specificity within 30 min, outperforming conventional PCR in speed and reliability while eliminating dependency on specialized equipment. Designed for field applications, it offers a cost-effective (US$1/test), user-friendly solution for on-site <i>S. suis</i> detection in swine farms and fresh pork meat, enhancing outbreak control and preventive healthcare in the livestock industry.</p></div>\",\"PeriodicalId\":574,\"journal\":{\"name\":\"Functional & Integrative Genomics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional & Integrative Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10142-025-01605-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-025-01605-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Establishment of a rapid RAA-CRISPR/Cas12a system targeting the recN gene for on-site detection of Streptococcus suis in livestock and fresh pork meat
Streptococcus suis is a major bacterial pathogen in the swine industry, causing meningitis, arthritis, and other diseases in infected pigs. It also poses significant public health risks due to its zoonotic potential, particularly in individuals with skin lesions. Current detection methods, including traditional culture-based techniques and PCR assays, are time-consuming, labor-intensive, and lack sufficient accuracy. To address these limitations, this study aimed to develop a rapid and precise detection method for S. suis. By leveraging whole-genome sequencing (WGS) and multiple sequence alignment, the recN gene was identified as a highly specific molecular target. A novel isothermal detection method, integrating recombinase-aided amplification (RAA) with CRISPR/Cas12a, was subsequently established. This RAA-CRISPR/Cas12a-based system demonstrated superior sensitivity compared to conventional PCR (targeting the gdh gene), achieving detection within 30 min without requiring specialized equipment. This method achieves 2.44 × 101 copies/µL and 2.1 × 101 CFU sensitivity and 100% specificity within 30 min, outperforming conventional PCR in speed and reliability while eliminating dependency on specialized equipment. Designed for field applications, it offers a cost-effective (US$1/test), user-friendly solution for on-site S. suis detection in swine farms and fresh pork meat, enhancing outbreak control and preventive healthcare in the livestock industry.
期刊介绍:
Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?