多层CuO/SiO2核壳结构改善了电催化co2到正丙醇的转化†

IF 9.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Green Chemistry Pub Date : 2025-04-15 DOI:10.1039/d4gc06563h
Sha Wang , Jiangling Zhang , Yingzhe Zhao , Jiajun Zhong , Zhongjun Chen , Yisen Yang , Buxing Han , Yongxin Cheng , Meiling Li , Qian Li
{"title":"多层CuO/SiO2核壳结构改善了电催化co2到正丙醇的转化†","authors":"Sha Wang ,&nbsp;Jiangling Zhang ,&nbsp;Yingzhe Zhao ,&nbsp;Jiajun Zhong ,&nbsp;Zhongjun Chen ,&nbsp;Yisen Yang ,&nbsp;Buxing Han ,&nbsp;Yongxin Cheng ,&nbsp;Meiling Li ,&nbsp;Qian Li","doi":"10.1039/d4gc06563h","DOIUrl":null,"url":null,"abstract":"<div><div>The electroreduction of carbon dioxide (CO<sub>2</sub>) to high-energy-density C<sub>3</sub> products (<em>e.g.</em>, <em>n</em>-propanol (<em>n</em>-PrOH)) is of great importance but restricted by low selectivity and activity. Herein, we developed a novel CuO/SiO<sub>2</sub> electrocatalyst, with multi-layered CuO as the core and an SiO<sub>2</sub> layer as the shell, for improving CO<sub>2</sub>-to-<em>n</em>-propanol conversion efficiency. Such a unique structure could stabilize and confine C<sub>1</sub> and C<sub>2</sub> intermediates, favoring their contact and carbon trimerization towards <em>n</em>-propanol formation. It delivered an <em>n</em>-propanol Faraday efficiency of 13.3% at −1.65 V with a partial current density of 94.0 mA cm<sup>−2</sup> in a flow cell. The mechanism for electrocatalytic CO<sub>2</sub>-to-<em>n</em>-PrOH conversion over the CuO/SiO<sub>2</sub> catalyst was investigated using <em>in situ</em> Raman spectroscopy and <em>in situ</em> attenuated total reflection surface-enhanced infrared absorption spectroscopy.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 18","pages":"Pages 5202-5209"},"PeriodicalIF":9.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-layered CuO/SiO2 core–shell structure improves electrocatalytic CO2-to-n-propanol conversion†\",\"authors\":\"Sha Wang ,&nbsp;Jiangling Zhang ,&nbsp;Yingzhe Zhao ,&nbsp;Jiajun Zhong ,&nbsp;Zhongjun Chen ,&nbsp;Yisen Yang ,&nbsp;Buxing Han ,&nbsp;Yongxin Cheng ,&nbsp;Meiling Li ,&nbsp;Qian Li\",\"doi\":\"10.1039/d4gc06563h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The electroreduction of carbon dioxide (CO<sub>2</sub>) to high-energy-density C<sub>3</sub> products (<em>e.g.</em>, <em>n</em>-propanol (<em>n</em>-PrOH)) is of great importance but restricted by low selectivity and activity. Herein, we developed a novel CuO/SiO<sub>2</sub> electrocatalyst, with multi-layered CuO as the core and an SiO<sub>2</sub> layer as the shell, for improving CO<sub>2</sub>-to-<em>n</em>-propanol conversion efficiency. Such a unique structure could stabilize and confine C<sub>1</sub> and C<sub>2</sub> intermediates, favoring their contact and carbon trimerization towards <em>n</em>-propanol formation. It delivered an <em>n</em>-propanol Faraday efficiency of 13.3% at −1.65 V with a partial current density of 94.0 mA cm<sup>−2</sup> in a flow cell. The mechanism for electrocatalytic CO<sub>2</sub>-to-<em>n</em>-PrOH conversion over the CuO/SiO<sub>2</sub> catalyst was investigated using <em>in situ</em> Raman spectroscopy and <em>in situ</em> attenuated total reflection surface-enhanced infrared absorption spectroscopy.</div></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\"27 18\",\"pages\":\"Pages 5202-5209\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926225002882\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225002882","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳(CO2)电还原为高能量密度的C3产物(如正丙醇(n-PrOH))是非常重要的,但受低选择性和低活性的限制。为此,我们开发了一种新型CuO/SiO2电催化剂,以多层CuO为核心,SiO2为壳层,以提高co2到正丙醇的转化效率。这种独特的结构可以稳定和限制C1和C2中间体,有利于它们的接触和碳三聚形成正丙醇。在- 1.65 V和94.0 mA cm−2的偏电流密度下,其正丙醇法拉第效率为13.3%。采用原位拉曼光谱和原位衰减全反射表面增强红外吸收光谱研究了CuO/SiO2催化剂上电催化co2转化为n- proh的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-layered CuO/SiO2 core–shell structure improves electrocatalytic CO2-to-n-propanol conversion†
The electroreduction of carbon dioxide (CO2) to high-energy-density C3 products (e.g., n-propanol (n-PrOH)) is of great importance but restricted by low selectivity and activity. Herein, we developed a novel CuO/SiO2 electrocatalyst, with multi-layered CuO as the core and an SiO2 layer as the shell, for improving CO2-to-n-propanol conversion efficiency. Such a unique structure could stabilize and confine C1 and C2 intermediates, favoring their contact and carbon trimerization towards n-propanol formation. It delivered an n-propanol Faraday efficiency of 13.3% at −1.65 V with a partial current density of 94.0 mA cm−2 in a flow cell. The mechanism for electrocatalytic CO2-to-n-PrOH conversion over the CuO/SiO2 catalyst was investigated using in situ Raman spectroscopy and in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信