光子突破2024:用于密集波分复用的铌酸锂光子学

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Hongxuan Liu;Mingyu Zhu;Liu Liu;Daoxin Dai
{"title":"光子突破2024:用于密集波分复用的铌酸锂光子学","authors":"Hongxuan Liu;Mingyu Zhu;Liu Liu;Daoxin Dai","doi":"10.1109/JPHOT.2025.3559697","DOIUrl":null,"url":null,"abstract":"The growing demands for ultrahigh-capacity data transmission require advanced multiplexing for multiple channels together with high-speed modulation. The dense wavelength-division multiplexing (DWDM) technology has been widely utilized over the past few decades, while lithium-niobate-on-insulator (LNOI) has recently shown significant benefits for high-speed electro-optic modulation. However, the implementation of DWDM components on x-cut LNOI faces challenges due to material anisotropy and structural asymmetry. This paper highlights recent breakthroughs in x-cut LNOI photonic transmitters and filters for DWDM systems, focusing on cascaded multimode Fabry-Perot cavities and anisotropy-free arrayed waveguide gratings. These innovative photonic devices, along with their excellent performance, strengthen LNOI photonics to be compelling for the development of multifunctional photonic integration available for high-capacity optical data transmission and optical signal processing.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 3","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10960714","citationCount":"0","resultStr":"{\"title\":\"Photonics Breakthroughs 2024: Lithium-Niobate Photonics for Dense Wavelength-Division Multiplexing\",\"authors\":\"Hongxuan Liu;Mingyu Zhu;Liu Liu;Daoxin Dai\",\"doi\":\"10.1109/JPHOT.2025.3559697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing demands for ultrahigh-capacity data transmission require advanced multiplexing for multiple channels together with high-speed modulation. The dense wavelength-division multiplexing (DWDM) technology has been widely utilized over the past few decades, while lithium-niobate-on-insulator (LNOI) has recently shown significant benefits for high-speed electro-optic modulation. However, the implementation of DWDM components on x-cut LNOI faces challenges due to material anisotropy and structural asymmetry. This paper highlights recent breakthroughs in x-cut LNOI photonic transmitters and filters for DWDM systems, focusing on cascaded multimode Fabry-Perot cavities and anisotropy-free arrayed waveguide gratings. These innovative photonic devices, along with their excellent performance, strengthen LNOI photonics to be compelling for the development of multifunctional photonic integration available for high-capacity optical data transmission and optical signal processing.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"17 3\",\"pages\":\"1-7\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10960714\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10960714/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10960714/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对超高容量数据传输日益增长的需求要求采用先进的多路复用技术和高速调制。密集波分复用(DWDM)技术在过去几十年中得到了广泛的应用,而绝缘体上铌酸锂(LNOI)最近在高速电光调制中显示出显著的优势。然而,由于材料的各向异性和结构的不对称性,在x切割LNOI上实现DWDM组件面临着挑战。本文重点介绍了用于DWDM系统的x切割LNOI光子发射器和滤波器的最新突破,重点是级联多模法布里-珀罗腔和无各向异性阵列波导光栅。这些创新的光子器件,以及它们卓越的性能,增强了LNOI光子学在开发高容量光数据传输和光信号处理的多功能光子集成方面的吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photonics Breakthroughs 2024: Lithium-Niobate Photonics for Dense Wavelength-Division Multiplexing
The growing demands for ultrahigh-capacity data transmission require advanced multiplexing for multiple channels together with high-speed modulation. The dense wavelength-division multiplexing (DWDM) technology has been widely utilized over the past few decades, while lithium-niobate-on-insulator (LNOI) has recently shown significant benefits for high-speed electro-optic modulation. However, the implementation of DWDM components on x-cut LNOI faces challenges due to material anisotropy and structural asymmetry. This paper highlights recent breakthroughs in x-cut LNOI photonic transmitters and filters for DWDM systems, focusing on cascaded multimode Fabry-Perot cavities and anisotropy-free arrayed waveguide gratings. These innovative photonic devices, along with their excellent performance, strengthen LNOI photonics to be compelling for the development of multifunctional photonic integration available for high-capacity optical data transmission and optical signal processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信