{"title":"光子突破2024:用于密集波分复用的铌酸锂光子学","authors":"Hongxuan Liu;Mingyu Zhu;Liu Liu;Daoxin Dai","doi":"10.1109/JPHOT.2025.3559697","DOIUrl":null,"url":null,"abstract":"The growing demands for ultrahigh-capacity data transmission require advanced multiplexing for multiple channels together with high-speed modulation. The dense wavelength-division multiplexing (DWDM) technology has been widely utilized over the past few decades, while lithium-niobate-on-insulator (LNOI) has recently shown significant benefits for high-speed electro-optic modulation. However, the implementation of DWDM components on x-cut LNOI faces challenges due to material anisotropy and structural asymmetry. This paper highlights recent breakthroughs in x-cut LNOI photonic transmitters and filters for DWDM systems, focusing on cascaded multimode Fabry-Perot cavities and anisotropy-free arrayed waveguide gratings. These innovative photonic devices, along with their excellent performance, strengthen LNOI photonics to be compelling for the development of multifunctional photonic integration available for high-capacity optical data transmission and optical signal processing.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 3","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10960714","citationCount":"0","resultStr":"{\"title\":\"Photonics Breakthroughs 2024: Lithium-Niobate Photonics for Dense Wavelength-Division Multiplexing\",\"authors\":\"Hongxuan Liu;Mingyu Zhu;Liu Liu;Daoxin Dai\",\"doi\":\"10.1109/JPHOT.2025.3559697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing demands for ultrahigh-capacity data transmission require advanced multiplexing for multiple channels together with high-speed modulation. The dense wavelength-division multiplexing (DWDM) technology has been widely utilized over the past few decades, while lithium-niobate-on-insulator (LNOI) has recently shown significant benefits for high-speed electro-optic modulation. However, the implementation of DWDM components on x-cut LNOI faces challenges due to material anisotropy and structural asymmetry. This paper highlights recent breakthroughs in x-cut LNOI photonic transmitters and filters for DWDM systems, focusing on cascaded multimode Fabry-Perot cavities and anisotropy-free arrayed waveguide gratings. These innovative photonic devices, along with their excellent performance, strengthen LNOI photonics to be compelling for the development of multifunctional photonic integration available for high-capacity optical data transmission and optical signal processing.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"17 3\",\"pages\":\"1-7\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10960714\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10960714/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10960714/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Photonics Breakthroughs 2024: Lithium-Niobate Photonics for Dense Wavelength-Division Multiplexing
The growing demands for ultrahigh-capacity data transmission require advanced multiplexing for multiple channels together with high-speed modulation. The dense wavelength-division multiplexing (DWDM) technology has been widely utilized over the past few decades, while lithium-niobate-on-insulator (LNOI) has recently shown significant benefits for high-speed electro-optic modulation. However, the implementation of DWDM components on x-cut LNOI faces challenges due to material anisotropy and structural asymmetry. This paper highlights recent breakthroughs in x-cut LNOI photonic transmitters and filters for DWDM systems, focusing on cascaded multimode Fabry-Perot cavities and anisotropy-free arrayed waveguide gratings. These innovative photonic devices, along with their excellent performance, strengthen LNOI photonics to be compelling for the development of multifunctional photonic integration available for high-capacity optical data transmission and optical signal processing.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.