从涡轮增压器发展而来的各种单轴和平行流布雷顿循环的比较概述

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
C.C. Cockcroft, W.G. Le Roux
{"title":"从涡轮增压器发展而来的各种单轴和平行流布雷顿循环的比较概述","authors":"C.C. Cockcroft,&nbsp;W.G. Le Roux","doi":"10.1016/j.enconman.2025.119837","DOIUrl":null,"url":null,"abstract":"<div><div>Automotive turbochargers can be used to develop gas turbine cycles; however, turbochargers operate at low pressure ratios where cycle performance is sensitive to the addition of pressure-drop components. Parallel-flow Brayton cycles have been proposed to reduce the effect of pressure losses on cycle performance. This analytical study therefore compares various parallel-flow Brayton cycle configurations to their single-shaft counterparts, considering combustion, recuperation, as well as a concentrated solar power input via a solar dish and an open-cavity tubular receiver to identify where parallel-flow cycles are advantageous. Results show that the main shaft turbocharger choice greatly influences whether a single-shaft or a parallel-flow cycle is more beneficial. In recuperated solar cycles with a 6 % combustion chamber pressure loss, the parallel-flow low-temperature-turbine configuration with the solar receiver before the power turbine (in parallel with the main shaft) can achieve a peak thermal efficiency of 23.5 %, with 3 kW of power output, at a pressure ratio of 1.6. This can be compared with a peak thermal efficiency of 21.8 % at a pressure ratio of 1.75 for its single-shaft counterpart. In recuperated parallel-flow cycles and recuperated solar parallel-flow cycles, thermal efficiency performance improves under increased combustion chamber pressure losses, from 6 % up to 11 %, in contrast to the declining performance of single-shaft cycles. More specifically, at a pressure ratio of 1.8, results show that the parallel-flow low-temperature-turbine configuration can outperform its single-shaft counterpart when combustion chamber pressure losses exceed 8.7 %. The study highlights the potential of parallel-flow Brayton cycles for recuperation and concentrated solar power integration, particularly in low-pressure-ratio systems, offering practical guidance for turbocharger and cycle configuration selection.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"335 ","pages":"Article 119837"},"PeriodicalIF":9.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative overview of various single-shaft and parallel-flow Brayton cycles developed from turbochargers\",\"authors\":\"C.C. Cockcroft,&nbsp;W.G. Le Roux\",\"doi\":\"10.1016/j.enconman.2025.119837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Automotive turbochargers can be used to develop gas turbine cycles; however, turbochargers operate at low pressure ratios where cycle performance is sensitive to the addition of pressure-drop components. Parallel-flow Brayton cycles have been proposed to reduce the effect of pressure losses on cycle performance. This analytical study therefore compares various parallel-flow Brayton cycle configurations to their single-shaft counterparts, considering combustion, recuperation, as well as a concentrated solar power input via a solar dish and an open-cavity tubular receiver to identify where parallel-flow cycles are advantageous. Results show that the main shaft turbocharger choice greatly influences whether a single-shaft or a parallel-flow cycle is more beneficial. In recuperated solar cycles with a 6 % combustion chamber pressure loss, the parallel-flow low-temperature-turbine configuration with the solar receiver before the power turbine (in parallel with the main shaft) can achieve a peak thermal efficiency of 23.5 %, with 3 kW of power output, at a pressure ratio of 1.6. This can be compared with a peak thermal efficiency of 21.8 % at a pressure ratio of 1.75 for its single-shaft counterpart. In recuperated parallel-flow cycles and recuperated solar parallel-flow cycles, thermal efficiency performance improves under increased combustion chamber pressure losses, from 6 % up to 11 %, in contrast to the declining performance of single-shaft cycles. More specifically, at a pressure ratio of 1.8, results show that the parallel-flow low-temperature-turbine configuration can outperform its single-shaft counterpart when combustion chamber pressure losses exceed 8.7 %. The study highlights the potential of parallel-flow Brayton cycles for recuperation and concentrated solar power integration, particularly in low-pressure-ratio systems, offering practical guidance for turbocharger and cycle configuration selection.</div></div>\",\"PeriodicalId\":11664,\"journal\":{\"name\":\"Energy Conversion and Management\",\"volume\":\"335 \",\"pages\":\"Article 119837\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196890425003607\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425003607","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

汽车涡轮增压器可用于发展燃气轮机循环;然而,涡轮增压器在低压比下工作,其循环性能对压降组件的添加很敏感。为了减少压力损失对循环性能的影响,提出了平行流布雷顿循环。因此,本分析研究将各种平行流布雷顿循环结构与单轴循环结构进行了比较,考虑了燃烧、回收以及通过太阳能盘和开腔管式接收器的集中太阳能输入,以确定平行流循环在哪些方面具有优势。结果表明,主轴增压器的选择对单轴循环和并联循环孰优孰劣有很大影响。在燃烧室压力损失为6%的回收太阳能循环中,在动力涡轮(与主轴平行)之前安装太阳能接收器的平行流低温涡轮配置可以在压力比为1.6的情况下实现23.5%的峰值热效率,输出功率为3 kW。这可以与单轴对应的压力比为1.75时的峰值热效率21.8%进行比较。在回收平行流循环和回收太阳能平行流循环中,在燃烧室压力损失增加的情况下,热效率性能从6%提高到11%,与单轴循环性能下降形成对比。更具体地说,在压力比为1.8时,当燃烧室压力损失超过8.7%时,平行流低温涡轮结构的性能优于单轴涡轮结构。该研究强调了平行流Brayton循环在回收和集中太阳能集成方面的潜力,特别是在低压比系统中,为涡轮增压器和循环配置选择提供了实用指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative overview of various single-shaft and parallel-flow Brayton cycles developed from turbochargers
Automotive turbochargers can be used to develop gas turbine cycles; however, turbochargers operate at low pressure ratios where cycle performance is sensitive to the addition of pressure-drop components. Parallel-flow Brayton cycles have been proposed to reduce the effect of pressure losses on cycle performance. This analytical study therefore compares various parallel-flow Brayton cycle configurations to their single-shaft counterparts, considering combustion, recuperation, as well as a concentrated solar power input via a solar dish and an open-cavity tubular receiver to identify where parallel-flow cycles are advantageous. Results show that the main shaft turbocharger choice greatly influences whether a single-shaft or a parallel-flow cycle is more beneficial. In recuperated solar cycles with a 6 % combustion chamber pressure loss, the parallel-flow low-temperature-turbine configuration with the solar receiver before the power turbine (in parallel with the main shaft) can achieve a peak thermal efficiency of 23.5 %, with 3 kW of power output, at a pressure ratio of 1.6. This can be compared with a peak thermal efficiency of 21.8 % at a pressure ratio of 1.75 for its single-shaft counterpart. In recuperated parallel-flow cycles and recuperated solar parallel-flow cycles, thermal efficiency performance improves under increased combustion chamber pressure losses, from 6 % up to 11 %, in contrast to the declining performance of single-shaft cycles. More specifically, at a pressure ratio of 1.8, results show that the parallel-flow low-temperature-turbine configuration can outperform its single-shaft counterpart when combustion chamber pressure losses exceed 8.7 %. The study highlights the potential of parallel-flow Brayton cycles for recuperation and concentrated solar power integration, particularly in low-pressure-ratio systems, offering practical guidance for turbocharger and cycle configuration selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信