结合可见光-近红外和近红外高光谱成像技术与数据融合策略快速无损测定亚麻籽中的多种营养品质

IF 4.3 2区 化学 Q1 SPECTROSCOPY
Dongyu Zhu , Junying Han , Chengzhong Liu , Jianping Zhang , Yanni Qi
{"title":"结合可见光-近红外和近红外高光谱成像技术与数据融合策略快速无损测定亚麻籽中的多种营养品质","authors":"Dongyu Zhu ,&nbsp;Junying Han ,&nbsp;Chengzhong Liu ,&nbsp;Jianping Zhang ,&nbsp;Yanni Qi","doi":"10.1016/j.saa.2025.126306","DOIUrl":null,"url":null,"abstract":"<div><div>Protein, oil content, stearic acid, linolenic acid, and linoleic acid are key indicators for evaluating the quality of flaxseed in order to optimize the detection method of nutritional quality of flaxseed and to improve the efficiency of the screening of high-quality flax germplasm resources. This study integrated visible near-infrared (Vis-NIR) and near-infrared (NIR) hyperspectral imaging to determine protein, oil, stearic acid, linolenic acid, and linoleic acid contents in diverse flaxseed varieties, along with conducting correlation analyses. After seven data preprocessing methods and three feature selection methods, quantitative prediction models were developed using partial least squares regression (PLSR), principal component regression (PCR), support vector regression (SVR), and multiple linear regression (MLR). Experimental results demonstrated that NIR and fused spectral data outperformed Vis-NIR data across all five quality indices. NIR spectroscopy showed optimal performance for predicting oil content (<span><math><mrow><msubsup><mi>R</mi><mrow><mi>p</mi></mrow><mn>2</mn></msubsup></mrow></math></span> = 0.9671, RMSEP = 0.4364 %), linolenic acid (<span><math><mrow><msubsup><mi>R</mi><mrow><mi>p</mi></mrow><mn>2</mn></msubsup></mrow></math></span> = 0.9517, RMSEP = 0.8795 %), and linoleic acid (<span><math><mrow><msubsup><mi>R</mi><mrow><mi>p</mi></mrow><mn>2</mn></msubsup></mrow></math></span> = 0.9458, RMSEP = 0.3037 %). Fused spectral data achieved superior predictions for protein content (<span><math><mrow><msubsup><mi>R</mi><mrow><mi>p</mi></mrow><mn>2</mn></msubsup></mrow></math></span> = 0.9712, RMSEP = 0.2360 %) and stearic acid (<span><math><mrow><msubsup><mi>R</mi><mrow><mi>p</mi></mrow><mn>2</mn></msubsup></mrow></math></span> = 0.9195, RMSEP = 0.3454 %). And the spatial distribution of flaxseed’s internal nutrient contents was also visualized by map. The results showed that the NIR and fusion spectral sets could be successfully used to evaluate multiple nutritional qualities of flaxseed, which provides a new option for nondestructive determination of the nutritional qualities of flaxseed in the future.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"340 ","pages":"Article 126306"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Vis-NIR and NIR hyperspectral imaging techniques with a data fusion strategy for rapid and nondestructive determination of multiple nutritional qualities in flaxseed\",\"authors\":\"Dongyu Zhu ,&nbsp;Junying Han ,&nbsp;Chengzhong Liu ,&nbsp;Jianping Zhang ,&nbsp;Yanni Qi\",\"doi\":\"10.1016/j.saa.2025.126306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Protein, oil content, stearic acid, linolenic acid, and linoleic acid are key indicators for evaluating the quality of flaxseed in order to optimize the detection method of nutritional quality of flaxseed and to improve the efficiency of the screening of high-quality flax germplasm resources. This study integrated visible near-infrared (Vis-NIR) and near-infrared (NIR) hyperspectral imaging to determine protein, oil, stearic acid, linolenic acid, and linoleic acid contents in diverse flaxseed varieties, along with conducting correlation analyses. After seven data preprocessing methods and three feature selection methods, quantitative prediction models were developed using partial least squares regression (PLSR), principal component regression (PCR), support vector regression (SVR), and multiple linear regression (MLR). Experimental results demonstrated that NIR and fused spectral data outperformed Vis-NIR data across all five quality indices. NIR spectroscopy showed optimal performance for predicting oil content (<span><math><mrow><msubsup><mi>R</mi><mrow><mi>p</mi></mrow><mn>2</mn></msubsup></mrow></math></span> = 0.9671, RMSEP = 0.4364 %), linolenic acid (<span><math><mrow><msubsup><mi>R</mi><mrow><mi>p</mi></mrow><mn>2</mn></msubsup></mrow></math></span> = 0.9517, RMSEP = 0.8795 %), and linoleic acid (<span><math><mrow><msubsup><mi>R</mi><mrow><mi>p</mi></mrow><mn>2</mn></msubsup></mrow></math></span> = 0.9458, RMSEP = 0.3037 %). Fused spectral data achieved superior predictions for protein content (<span><math><mrow><msubsup><mi>R</mi><mrow><mi>p</mi></mrow><mn>2</mn></msubsup></mrow></math></span> = 0.9712, RMSEP = 0.2360 %) and stearic acid (<span><math><mrow><msubsup><mi>R</mi><mrow><mi>p</mi></mrow><mn>2</mn></msubsup></mrow></math></span> = 0.9195, RMSEP = 0.3454 %). And the spatial distribution of flaxseed’s internal nutrient contents was also visualized by map. The results showed that the NIR and fusion spectral sets could be successfully used to evaluate multiple nutritional qualities of flaxseed, which provides a new option for nondestructive determination of the nutritional qualities of flaxseed in the future.</div></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":\"340 \",\"pages\":\"Article 126306\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386142525006122\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525006122","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质、油脂含量、硬脂酸、亚麻酸和亚油酸是评价亚麻籽品质的关键指标,旨在优化亚麻籽营养品质的检测方法,提高亚麻优质种质资源的筛选效率。本研究利用可见光近红外(Vis-NIR)和近红外(NIR)高光谱成像技术测定了不同亚麻籽品种中蛋白质、油脂、硬脂酸、亚麻酸和亚油酸的含量,并进行了相关分析。通过7种数据预处理方法和3种特征选择方法,利用偏最小二乘回归(PLSR)、主成分回归(PCR)、支持向量回归(SVR)和多元线性回归(MLR)建立定量预测模型。实验结果表明,近红外和融合光谱数据在所有五个质量指标上都优于可见光-近红外数据。近红外光谱对油分(Rp2 = 0.9671, RMSEP = 0.4364%)、亚麻酸(Rp2 = 0.9517, RMSEP = 0.8795%)、亚油酸(Rp2 = 0.9458, RMSEP = 0.3037%)的预测效果最佳。融合光谱数据对蛋白质含量(Rp2 = 0.9712, RMSEP = 0.2360%)和硬脂酸(Rp2 = 0.9195, RMSEP = 0.3454 %)具有较好的预测效果。并利用地图可视化了亚麻籽内部营养成分的空间分布。结果表明,近红外光谱和融合光谱可以成功地评价亚麻籽的多种营养品质,为亚麻籽营养品质的无损检测提供了一种新的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Combining Vis-NIR and NIR hyperspectral imaging techniques with a data fusion strategy for rapid and nondestructive determination of multiple nutritional qualities in flaxseed

Combining Vis-NIR and NIR hyperspectral imaging techniques with a data fusion strategy for rapid and nondestructive determination of multiple nutritional qualities in flaxseed
Protein, oil content, stearic acid, linolenic acid, and linoleic acid are key indicators for evaluating the quality of flaxseed in order to optimize the detection method of nutritional quality of flaxseed and to improve the efficiency of the screening of high-quality flax germplasm resources. This study integrated visible near-infrared (Vis-NIR) and near-infrared (NIR) hyperspectral imaging to determine protein, oil, stearic acid, linolenic acid, and linoleic acid contents in diverse flaxseed varieties, along with conducting correlation analyses. After seven data preprocessing methods and three feature selection methods, quantitative prediction models were developed using partial least squares regression (PLSR), principal component regression (PCR), support vector regression (SVR), and multiple linear regression (MLR). Experimental results demonstrated that NIR and fused spectral data outperformed Vis-NIR data across all five quality indices. NIR spectroscopy showed optimal performance for predicting oil content (Rp2 = 0.9671, RMSEP = 0.4364 %), linolenic acid (Rp2 = 0.9517, RMSEP = 0.8795 %), and linoleic acid (Rp2 = 0.9458, RMSEP = 0.3037 %). Fused spectral data achieved superior predictions for protein content (Rp2 = 0.9712, RMSEP = 0.2360 %) and stearic acid (Rp2 = 0.9195, RMSEP = 0.3454 %). And the spatial distribution of flaxseed’s internal nutrient contents was also visualized by map. The results showed that the NIR and fusion spectral sets could be successfully used to evaluate multiple nutritional qualities of flaxseed, which provides a new option for nondestructive determination of the nutritional qualities of flaxseed in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
11.40%
发文量
1364
审稿时长
40 days
期刊介绍: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science. The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments. Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate. Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to: Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences, Novel experimental techniques or instrumentation for molecular spectroscopy, Novel theoretical and computational methods, Novel applications in photochemistry and photobiology, Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信