{"title":"Zp上有理函数的极小性准则","authors":"Sangtae Jeong, Yongjae Kwon","doi":"10.1016/j.jmaa.2025.129624","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we characterize the minimality criteria for a rational function on <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> where the denominator possesses no zeros modulo <em>p</em>. This characterization is specifically formulated regarding the coefficients of a rational function, focusing on cases where <em>p</em> equals 2 or 3. For an arbitrary prime <span><math><mi>p</mi><mo>≥</mo><mn>5</mn></math></span>, we provide an explicit formulation of the minimality criterion for such functions, contingent on the successful determination of the prescribed minimal conditions for the reduction of <em>f</em> modulo <em>p</em>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129624"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimality criteria for rational functions over Zp\",\"authors\":\"Sangtae Jeong, Yongjae Kwon\",\"doi\":\"10.1016/j.jmaa.2025.129624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we characterize the minimality criteria for a rational function on <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> where the denominator possesses no zeros modulo <em>p</em>. This characterization is specifically formulated regarding the coefficients of a rational function, focusing on cases where <em>p</em> equals 2 or 3. For an arbitrary prime <span><math><mi>p</mi><mo>≥</mo><mn>5</mn></math></span>, we provide an explicit formulation of the minimality criterion for such functions, contingent on the successful determination of the prescribed minimal conditions for the reduction of <em>f</em> modulo <em>p</em>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 1\",\"pages\":\"Article 129624\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004056\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004056","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Minimality criteria for rational functions over Zp
In this paper, we characterize the minimality criteria for a rational function on where the denominator possesses no zeros modulo p. This characterization is specifically formulated regarding the coefficients of a rational function, focusing on cases where p equals 2 or 3. For an arbitrary prime , we provide an explicit formulation of the minimality criterion for such functions, contingent on the successful determination of the prescribed minimal conditions for the reduction of f modulo p.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.