Zp上有理函数的极小性准则

IF 1.2 3区 数学 Q1 MATHEMATICS
Sangtae Jeong, Yongjae Kwon
{"title":"Zp上有理函数的极小性准则","authors":"Sangtae Jeong,&nbsp;Yongjae Kwon","doi":"10.1016/j.jmaa.2025.129624","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we characterize the minimality criteria for a rational function on <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> where the denominator possesses no zeros modulo <em>p</em>. This characterization is specifically formulated regarding the coefficients of a rational function, focusing on cases where <em>p</em> equals 2 or 3. For an arbitrary prime <span><math><mi>p</mi><mo>≥</mo><mn>5</mn></math></span>, we provide an explicit formulation of the minimality criterion for such functions, contingent on the successful determination of the prescribed minimal conditions for the reduction of <em>f</em> modulo <em>p</em>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129624"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimality criteria for rational functions over Zp\",\"authors\":\"Sangtae Jeong,&nbsp;Yongjae Kwon\",\"doi\":\"10.1016/j.jmaa.2025.129624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we characterize the minimality criteria for a rational function on <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> where the denominator possesses no zeros modulo <em>p</em>. This characterization is specifically formulated regarding the coefficients of a rational function, focusing on cases where <em>p</em> equals 2 or 3. For an arbitrary prime <span><math><mi>p</mi><mo>≥</mo><mn>5</mn></math></span>, we provide an explicit formulation of the minimality criterion for such functions, contingent on the successful determination of the prescribed minimal conditions for the reduction of <em>f</em> modulo <em>p</em>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 1\",\"pages\":\"Article 129624\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004056\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004056","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们刻画了Zp上有理数函数的极小性准则,其中分母模p不为零。这一刻画是针对有理数函数的系数特别表述的,重点是在p等于2或3的情况下。对于任意素数p≥5,我们提供了这类函数极小性准则的显式表述,这取决于f模p约化的规定极小条件的成功确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimality criteria for rational functions over Zp
In this paper, we characterize the minimality criteria for a rational function on Zp where the denominator possesses no zeros modulo p. This characterization is specifically formulated regarding the coefficients of a rational function, focusing on cases where p equals 2 or 3. For an arbitrary prime p5, we provide an explicit formulation of the minimality criterion for such functions, contingent on the successful determination of the prescribed minimal conditions for the reduction of f modulo p.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信