基于多表达式编程的具有热生成和粘性耗散的纳米流体填充壳体中MHD传热增强研究

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Naeem Ullah , Aneela Bibi , Dianchen Lu
{"title":"基于多表达式编程的具有热生成和粘性耗散的纳米流体填充壳体中MHD传热增强研究","authors":"Naeem Ullah ,&nbsp;Aneela Bibi ,&nbsp;Dianchen Lu","doi":"10.1016/j.cpc.2025.109649","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient thermal management is a critical challenge in various engineering configuration where overheating affects performance, such as electronics, industrial cooling, and HVAC applications. Traditional cooling methods often struggle with confined enclosures, leading to inefficiencies. Nanofluids and optimized heating mechanisms offer a promising solution, but their complex thermal behavior requires precise predictive modeling. This study addresses this challenge by conducting a numerical analysis of heat transfer in nanofluid-filled enclosures with sinusoidal heating. This study employs multi-expression programming technique to improve thermal performance by analyzing heating design and electromagnetic interactions. In this exploration a square enclosure filled with water-based copper oxide nanofluid is evaluated, featuring a centrally located sinusoidal heated element. The enclosure is also partially heated from below, cooled along the sidewalls, while the upper and remaining lower portions are insulated. The numerical simulation explores flow-controlling variables, including nanoparticles volume fraction, heating element amplitude, magnetic field strength and its orientation, viscous dissipation, and heat generation, to assess their impact on flow dynamics and thermal performance. The findings indicate that the Nusselt number increases by <span><math><mrow><mn>26.68</mn><mo>%</mo></mrow></math></span> when nanoparticle concentration reaches <span><math><mrow><mn>4</mn><mo>%</mo></mrow></math></span>, while a rise in Rayleigh number from <span><math><msup><mrow><mn>10</mn></mrow><mn>3</mn></msup></math></span> to <span><math><msup><mrow><mn>10</mn></mrow><mn>6</mn></msup></math></span> results in an approximate <span><math><mrow><mn>75.40</mn><mo>%</mo></mrow></math></span> increase. Moreover, the average percentage decrease in Nusselt number against <span><math><msub><mi>Q</mi><mi>g</mi></msub></math></span> from 0 to 30 is 20.71% while for <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span> (10 to 100) it is 42.61%.The multi-expression programming model accurately predicts convective heat transfer trends, achieving a high correlation coefficient (<span><math><mrow><msub><mi>C</mi><mi>R</mi></msub><mo>=</mo><mn>0.99</mn></mrow></math></span> for training, <span><math><mrow><msub><mi>C</mi><mi>R</mi></msub><mo>=</mo><mn>0.94</mn></mrow></math></span> for testing) and low error metrics (<span><math><mrow><mi>R</mi><mi>M</mi><mi>S</mi><mi>E</mi><mspace></mspace><mo>=</mo><mspace></mspace><mn>0.02</mn><mo>,</mo><mspace></mspace><mi>M</mi><mi>A</mi><mi>E</mi><mspace></mspace><mo>=</mo><mspace></mspace><mn>0.03</mn><mo>,</mo><mspace></mspace><mi>P</mi><mi>I</mi><mspace></mspace><mo>=</mo><mspace></mspace><mn>0.06</mn></mrow></math></span> for training), ensuring strong agreement with numerical results.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"313 ","pages":"Article 109649"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-expression programming for enhancing MHD heat transfer in a nanofluid-filled enclosure with heat generation and viscous dissipation\",\"authors\":\"Naeem Ullah ,&nbsp;Aneela Bibi ,&nbsp;Dianchen Lu\",\"doi\":\"10.1016/j.cpc.2025.109649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient thermal management is a critical challenge in various engineering configuration where overheating affects performance, such as electronics, industrial cooling, and HVAC applications. Traditional cooling methods often struggle with confined enclosures, leading to inefficiencies. Nanofluids and optimized heating mechanisms offer a promising solution, but their complex thermal behavior requires precise predictive modeling. This study addresses this challenge by conducting a numerical analysis of heat transfer in nanofluid-filled enclosures with sinusoidal heating. This study employs multi-expression programming technique to improve thermal performance by analyzing heating design and electromagnetic interactions. In this exploration a square enclosure filled with water-based copper oxide nanofluid is evaluated, featuring a centrally located sinusoidal heated element. The enclosure is also partially heated from below, cooled along the sidewalls, while the upper and remaining lower portions are insulated. The numerical simulation explores flow-controlling variables, including nanoparticles volume fraction, heating element amplitude, magnetic field strength and its orientation, viscous dissipation, and heat generation, to assess their impact on flow dynamics and thermal performance. The findings indicate that the Nusselt number increases by <span><math><mrow><mn>26.68</mn><mo>%</mo></mrow></math></span> when nanoparticle concentration reaches <span><math><mrow><mn>4</mn><mo>%</mo></mrow></math></span>, while a rise in Rayleigh number from <span><math><msup><mrow><mn>10</mn></mrow><mn>3</mn></msup></math></span> to <span><math><msup><mrow><mn>10</mn></mrow><mn>6</mn></msup></math></span> results in an approximate <span><math><mrow><mn>75.40</mn><mo>%</mo></mrow></math></span> increase. Moreover, the average percentage decrease in Nusselt number against <span><math><msub><mi>Q</mi><mi>g</mi></msub></math></span> from 0 to 30 is 20.71% while for <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span> (10 to 100) it is 42.61%.The multi-expression programming model accurately predicts convective heat transfer trends, achieving a high correlation coefficient (<span><math><mrow><msub><mi>C</mi><mi>R</mi></msub><mo>=</mo><mn>0.99</mn></mrow></math></span> for training, <span><math><mrow><msub><mi>C</mi><mi>R</mi></msub><mo>=</mo><mn>0.94</mn></mrow></math></span> for testing) and low error metrics (<span><math><mrow><mi>R</mi><mi>M</mi><mi>S</mi><mi>E</mi><mspace></mspace><mo>=</mo><mspace></mspace><mn>0.02</mn><mo>,</mo><mspace></mspace><mi>M</mi><mi>A</mi><mi>E</mi><mspace></mspace><mo>=</mo><mspace></mspace><mn>0.03</mn><mo>,</mo><mspace></mspace><mi>P</mi><mi>I</mi><mspace></mspace><mo>=</mo><mspace></mspace><mn>0.06</mn></mrow></math></span> for training), ensuring strong agreement with numerical results.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"313 \",\"pages\":\"Article 109649\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465525001511\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525001511","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在各种工程配置中,高效的热管理是一个关键的挑战,因为过热会影响性能,例如电子、工业冷却和HVAC应用。传统的冷却方法往往与密闭的外壳斗争,导致效率低下。纳米流体和优化的加热机制提供了一个很有前途的解决方案,但它们复杂的热行为需要精确的预测建模。本研究通过对具有正弦加热的纳米流体填充外壳的传热进行数值分析来解决这一挑战。本研究采用多表达式编程技术,通过分析加热设计和电磁相互作用来改善热工性能。在这个探索中,评估了一个充满水基氧化铜纳米流体的方形外壳,其特征是位于中心的正弦加热元件。外壳也部分从下面加热,沿侧壁冷却,而上部和其余下部是绝缘的。数值模拟研究了流动控制变量,包括纳米颗粒体积分数、加热元件振幅、磁场强度及其方向、粘性耗散和热量产生,以评估它们对流动动力学和热性能的影响。结果表明,当纳米颗粒浓度达到4%时,Nusselt数增加了26.68%,而瑞利数从103增加到106,增加了约75.40%。在0 ~ 30 Qg范围内,努塞尔数相对于Qg的平均降幅为20.71%,而Ha(10 ~ 100)的降幅为42.61%。多表达式编程模型准确预测对流换热趋势,实现了高相关系数(训练CR=0.99,测试CR=0.94)和低误差指标(RMSE=0.02,MAE=0.03,PI=0.06),确保了与数值结果的强一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-expression programming for enhancing MHD heat transfer in a nanofluid-filled enclosure with heat generation and viscous dissipation
Efficient thermal management is a critical challenge in various engineering configuration where overheating affects performance, such as electronics, industrial cooling, and HVAC applications. Traditional cooling methods often struggle with confined enclosures, leading to inefficiencies. Nanofluids and optimized heating mechanisms offer a promising solution, but their complex thermal behavior requires precise predictive modeling. This study addresses this challenge by conducting a numerical analysis of heat transfer in nanofluid-filled enclosures with sinusoidal heating. This study employs multi-expression programming technique to improve thermal performance by analyzing heating design and electromagnetic interactions. In this exploration a square enclosure filled with water-based copper oxide nanofluid is evaluated, featuring a centrally located sinusoidal heated element. The enclosure is also partially heated from below, cooled along the sidewalls, while the upper and remaining lower portions are insulated. The numerical simulation explores flow-controlling variables, including nanoparticles volume fraction, heating element amplitude, magnetic field strength and its orientation, viscous dissipation, and heat generation, to assess their impact on flow dynamics and thermal performance. The findings indicate that the Nusselt number increases by 26.68% when nanoparticle concentration reaches 4%, while a rise in Rayleigh number from 103 to 106 results in an approximate 75.40% increase. Moreover, the average percentage decrease in Nusselt number against Qg from 0 to 30 is 20.71% while for Ha (10 to 100) it is 42.61%.The multi-expression programming model accurately predicts convective heat transfer trends, achieving a high correlation coefficient (CR=0.99 for training, CR=0.94 for testing) and low error metrics (RMSE=0.02,MAE=0.03,PI=0.06 for training), ensuring strong agreement with numerical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信