Elizabeth Suehr , Manuel Gale , Ramon Lopez , Raymond L. Fontenot , Peter Liever , Jennifer S Curtis
{"title":"带灯的平行LEBC中的多球刚体粒子","authors":"Elizabeth Suehr , Manuel Gale , Ramon Lopez , Raymond L. Fontenot , Peter Liever , Jennifer S Curtis","doi":"10.1016/j.cpc.2025.109636","DOIUrl":null,"url":null,"abstract":"<div><div>A method for the Message Passing Interface (MPI) parallelization of the Lees-Edwards boundary condition (LEBC) within the LIGGGHTS framework for multi-sphere rigid particles was created, allowing for the simulation of very detailed complex shapes. Double-send and double-receive communication was added to LIGGGHTS to allow for shared information across disjointed processor domains along the shearing boundary of the LEBC. The verification of this method is performed via 3D shearing simulations of single spheres and sphere clumps and rods with aspect ratios 2, 4, and 6. The predicted shear stress employing the new parallelized LEBC method matches stress values from granular kinetic theory and previously published simulation results. No LEBC simulations for DEM or multi-sphere rigid particles are known to be parallelized, allowing for computationally difficult LEBC multi-sphere simulations to be performed for the first time.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"313 ","pages":"Article 109636"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-sphere rigid-body particles in a parallelized LEBC with LIGGGHTS\",\"authors\":\"Elizabeth Suehr , Manuel Gale , Ramon Lopez , Raymond L. Fontenot , Peter Liever , Jennifer S Curtis\",\"doi\":\"10.1016/j.cpc.2025.109636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A method for the Message Passing Interface (MPI) parallelization of the Lees-Edwards boundary condition (LEBC) within the LIGGGHTS framework for multi-sphere rigid particles was created, allowing for the simulation of very detailed complex shapes. Double-send and double-receive communication was added to LIGGGHTS to allow for shared information across disjointed processor domains along the shearing boundary of the LEBC. The verification of this method is performed via 3D shearing simulations of single spheres and sphere clumps and rods with aspect ratios 2, 4, and 6. The predicted shear stress employing the new parallelized LEBC method matches stress values from granular kinetic theory and previously published simulation results. No LEBC simulations for DEM or multi-sphere rigid particles are known to be parallelized, allowing for computationally difficult LEBC multi-sphere simulations to be performed for the first time.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"313 \",\"pages\":\"Article 109636\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465525001389\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525001389","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multi-sphere rigid-body particles in a parallelized LEBC with LIGGGHTS
A method for the Message Passing Interface (MPI) parallelization of the Lees-Edwards boundary condition (LEBC) within the LIGGGHTS framework for multi-sphere rigid particles was created, allowing for the simulation of very detailed complex shapes. Double-send and double-receive communication was added to LIGGGHTS to allow for shared information across disjointed processor domains along the shearing boundary of the LEBC. The verification of this method is performed via 3D shearing simulations of single spheres and sphere clumps and rods with aspect ratios 2, 4, and 6. The predicted shear stress employing the new parallelized LEBC method matches stress values from granular kinetic theory and previously published simulation results. No LEBC simulations for DEM or multi-sphere rigid particles are known to be parallelized, allowing for computationally difficult LEBC multi-sphere simulations to be performed for the first time.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.