揭示双金属硫族化合物Ni Co2X4 (X = S, Se, Te)的潜力:电子结构,量子电容和先进储能机械性能的计算探索

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mangal S. Yadav, Simran Kour, A.L. Sharma
{"title":"揭示双金属硫族化合物Ni Co2X4 (X = S, Se, Te)的潜力:电子结构,量子电容和先进储能机械性能的计算探索","authors":"Mangal S. Yadav,&nbsp;Simran Kour,&nbsp;A.L. Sharma","doi":"10.1016/j.jpcs.2025.112830","DOIUrl":null,"url":null,"abstract":"<div><div>A move towards renewable energy sources is now essential to meet society's rising energy demands, and adequate energy storage for later use is also required. This study investigates Bimetallic Transition Metal Chalcogenides (BTMCs), specifically Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mi>X</mi><mn>4</mn></msub></mrow></math></span> (X = S, Se, Te), for energy storage applications. Using Density Functional Theory (DFT), the electronic properties, quantum capacitance (<span><math><mrow><msub><mi>C</mi><mi>Q</mi></msub></mrow></math></span>), and surface charge density of bulk structures are analyzed. BTMCs exhibit enhanced properties due to the synergistic effects of multiple transition metals, making them superior to single-metal chalcogenides. Experimentally less explored Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mtext>Se</mtext><mn>4</mn></msub></mrow></math></span> with cubic phase has shown the highest <span><math><mrow><msub><mi>C</mi><mi>Q</mi></msub></mrow></math></span> (3418 F/g) and surface charge density (1902C/g), attributed to selenium's atomic properties. Highest <span><math><mrow><msub><mi>C</mi><mi>Q</mi></msub></mrow></math></span> obtained for Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mi>S</mi><mn>4</mn></msub></mrow></math></span>, Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mtext>Se</mtext><mn>4</mn></msub></mrow></math></span> and Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mtext>Te</mtext><mn>4</mn></msub></mrow></math></span> is 2510, 3418,2860 F/g at the potential +1V, similar trend is visible in surface charge density are forNi <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mi>S</mi><mn>4</mn></msub></mrow></math></span>, Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mtext>Se</mtext><mn>4</mn></msub></mrow></math></span> and Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mtext>Te</mtext><mn>4</mn></msub></mrow></math></span> is 1791,1902 and 1678 C/g at the potential of +1V.Also, Young's modulus (Y) for Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mi>S</mi><mn>4</mn></msub></mrow></math></span>, Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mtext>Se</mtext><mn>4</mn></msub></mrow></math></span> and Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mtext>Te</mtext><mn>4</mn></msub></mrow></math></span> is 170,189 and 177 GPa, respectively. Higher ‘Y’ of Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mtext>Se</mtext><mn>4</mn></msub></mrow></math></span> will be good for applications requiring high mechanical strength and stiffness. The NiCo<sub>2</sub>X<sub>4</sub> (X = S, Se, Te) combination in chalcogenides enhances redox activity, stability, and electrochemical performance through multiple oxidation states and strong orbital hybridization. Computational studies predict material behavior and guide experiments to identify cathodic and anodic materials for asymmetric supercapacitors.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"205 ","pages":"Article 112830"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the potential of bimetallic chalcogenides Ni Co2X4 (X = S, Se, Te): A computational exploration of electronic structure, quantum capacitance, and mechanical properties for advanced energy storage\",\"authors\":\"Mangal S. Yadav,&nbsp;Simran Kour,&nbsp;A.L. Sharma\",\"doi\":\"10.1016/j.jpcs.2025.112830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A move towards renewable energy sources is now essential to meet society's rising energy demands, and adequate energy storage for later use is also required. This study investigates Bimetallic Transition Metal Chalcogenides (BTMCs), specifically Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mi>X</mi><mn>4</mn></msub></mrow></math></span> (X = S, Se, Te), for energy storage applications. Using Density Functional Theory (DFT), the electronic properties, quantum capacitance (<span><math><mrow><msub><mi>C</mi><mi>Q</mi></msub></mrow></math></span>), and surface charge density of bulk structures are analyzed. BTMCs exhibit enhanced properties due to the synergistic effects of multiple transition metals, making them superior to single-metal chalcogenides. Experimentally less explored Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mtext>Se</mtext><mn>4</mn></msub></mrow></math></span> with cubic phase has shown the highest <span><math><mrow><msub><mi>C</mi><mi>Q</mi></msub></mrow></math></span> (3418 F/g) and surface charge density (1902C/g), attributed to selenium's atomic properties. Highest <span><math><mrow><msub><mi>C</mi><mi>Q</mi></msub></mrow></math></span> obtained for Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mi>S</mi><mn>4</mn></msub></mrow></math></span>, Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mtext>Se</mtext><mn>4</mn></msub></mrow></math></span> and Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mtext>Te</mtext><mn>4</mn></msub></mrow></math></span> is 2510, 3418,2860 F/g at the potential +1V, similar trend is visible in surface charge density are forNi <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mi>S</mi><mn>4</mn></msub></mrow></math></span>, Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mtext>Se</mtext><mn>4</mn></msub></mrow></math></span> and Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mtext>Te</mtext><mn>4</mn></msub></mrow></math></span> is 1791,1902 and 1678 C/g at the potential of +1V.Also, Young's modulus (Y) for Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mi>S</mi><mn>4</mn></msub></mrow></math></span>, Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mtext>Se</mtext><mn>4</mn></msub></mrow></math></span> and Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mtext>Te</mtext><mn>4</mn></msub></mrow></math></span> is 170,189 and 177 GPa, respectively. Higher ‘Y’ of Ni <span><math><mrow><msub><mtext>Co</mtext><mn>2</mn></msub><msub><mtext>Se</mtext><mn>4</mn></msub></mrow></math></span> will be good for applications requiring high mechanical strength and stiffness. The NiCo<sub>2</sub>X<sub>4</sub> (X = S, Se, Te) combination in chalcogenides enhances redox activity, stability, and electrochemical performance through multiple oxidation states and strong orbital hybridization. Computational studies predict material behavior and guide experiments to identify cathodic and anodic materials for asymmetric supercapacitors.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"205 \",\"pages\":\"Article 112830\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725002823\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725002823","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

现在,为了满足社会不断增长的能源需求,向可再生能源的转变是必不可少的,而且还需要足够的能源储存以供以后使用。本研究研究了双金属过渡金属硫族化物(BTMCs),特别是Ni Co2X4 (X = S, Se, Te),用于储能应用。利用密度泛函理论(DFT)分析了块体结构的电子特性、量子电容(CQ)和表面电荷密度。由于多种过渡金属的协同作用,btmc表现出增强的性能,使其优于单金属硫族化合物。由于硒的原子性质,具有立方相的Ni Co2Se4表现出最高的CQ (3418 F/g)和表面电荷密度(1902C/g)。Ni Co2S4、Ni Co2Se4和Ni Co2Te4在+1V电位下的CQ值分别为2510、3418和2860 F/g, Ni Co2S4、Ni Co2Se4和Ni Co2Te4在+1V电位下的表面电荷密度分别为1791、1902和1678 C/g。此外,Ni Co2S4、Ni Co2Se4和Ni Co2Te4的杨氏模量(Y)分别为170,189和177 GPa。较高的Ni Co2Se4 ‘ Y ’将有利于需要高机械强度和刚度的应用。硫族化合物中的NiCo2X4 (X = S, Se, Te)组合通过多氧化态和强轨道杂化增强了氧化还原活性、稳定性和电化学性能。计算研究预测材料的行为和指导实验,以确定非对称超级电容器的阴极和阳极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling the potential of bimetallic chalcogenides Ni Co2X4 (X = S, Se, Te): A computational exploration of electronic structure, quantum capacitance, and mechanical properties for advanced energy storage
A move towards renewable energy sources is now essential to meet society's rising energy demands, and adequate energy storage for later use is also required. This study investigates Bimetallic Transition Metal Chalcogenides (BTMCs), specifically Ni Co2X4 (X = S, Se, Te), for energy storage applications. Using Density Functional Theory (DFT), the electronic properties, quantum capacitance (CQ), and surface charge density of bulk structures are analyzed. BTMCs exhibit enhanced properties due to the synergistic effects of multiple transition metals, making them superior to single-metal chalcogenides. Experimentally less explored Ni Co2Se4 with cubic phase has shown the highest CQ (3418 F/g) and surface charge density (1902C/g), attributed to selenium's atomic properties. Highest CQ obtained for Ni Co2S4, Ni Co2Se4 and Ni Co2Te4 is 2510, 3418,2860 F/g at the potential +1V, similar trend is visible in surface charge density are forNi Co2S4, Ni Co2Se4 and Ni Co2Te4 is 1791,1902 and 1678 C/g at the potential of +1V.Also, Young's modulus (Y) for Ni Co2S4, Ni Co2Se4 and Ni Co2Te4 is 170,189 and 177 GPa, respectively. Higher ‘Y’ of Ni Co2Se4 will be good for applications requiring high mechanical strength and stiffness. The NiCo2X4 (X = S, Se, Te) combination in chalcogenides enhances redox activity, stability, and electrochemical performance through multiple oxidation states and strong orbital hybridization. Computational studies predict material behavior and guide experiments to identify cathodic and anodic materials for asymmetric supercapacitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信