Michael Lacey , Ji Li , Brett D. Wick , Liangchuan Wu
{"title":"Schatten类和Riesz变换的换向子在两种权值设置下","authors":"Michael Lacey , Ji Li , Brett D. Wick , Liangchuan Wu","doi":"10.1016/j.jfa.2025.111028","DOIUrl":null,"url":null,"abstract":"<div><div>We characterize the Schatten class <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> of the commutator of Riesz transforms <span><math><mo>[</mo><mi>b</mi><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>]</mo></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> (<span><math><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></math></span>) in the two weight setting for <span><math><mi>n</mi><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>, by introducing the condition that the symbol <em>b</em> is in Besov spaces associated with the given two weights. At the critical index <span><math><mi>p</mi><mo>=</mo><mi>n</mi></math></span>, the commutator <span><math><mo>[</mo><mi>b</mi><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>]</mo></math></span> belongs to Schatten class <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> if and only if <em>b</em> is a constant, and to the weak Schatten class <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>,</mo><mo>∞</mo></mrow></msup></math></span> if and only if <em>b</em> is in an oscillation sequence space associated with the given two weights. As a direct application, we have the Schatten class estimate for A. Connes' quantized derivative in the two weight setting.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 111028"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schatten classes and commutators of Riesz transforms in the two weight setting\",\"authors\":\"Michael Lacey , Ji Li , Brett D. Wick , Liangchuan Wu\",\"doi\":\"10.1016/j.jfa.2025.111028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We characterize the Schatten class <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> of the commutator of Riesz transforms <span><math><mo>[</mo><mi>b</mi><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>]</mo></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> (<span><math><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></math></span>) in the two weight setting for <span><math><mi>n</mi><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>, by introducing the condition that the symbol <em>b</em> is in Besov spaces associated with the given two weights. At the critical index <span><math><mi>p</mi><mo>=</mo><mi>n</mi></math></span>, the commutator <span><math><mo>[</mo><mi>b</mi><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>]</mo></math></span> belongs to Schatten class <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> if and only if <em>b</em> is a constant, and to the weak Schatten class <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>,</mo><mo>∞</mo></mrow></msup></math></span> if and only if <em>b</em> is in an oscillation sequence space associated with the given two weights. As a direct application, we have the Schatten class estimate for A. Connes' quantized derivative in the two weight setting.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 6\",\"pages\":\"Article 111028\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625002101\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002101","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Schatten classes and commutators of Riesz transforms in the two weight setting
We characterize the Schatten class of the commutator of Riesz transforms in () in the two weight setting for , by introducing the condition that the symbol b is in Besov spaces associated with the given two weights. At the critical index , the commutator belongs to Schatten class if and only if b is a constant, and to the weak Schatten class if and only if b is in an oscillation sequence space associated with the given two weights. As a direct application, we have the Schatten class estimate for A. Connes' quantized derivative in the two weight setting.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis