SU(1,1)全纯离散级数的量子通道泛函演算

IF 1.7 2区 数学 Q1 MATHEMATICS
Robin van Haastrecht
{"title":"SU(1,1)全纯离散级数的量子通道泛函演算","authors":"Robin van Haastrecht","doi":"10.1016/j.jfa.2025.111036","DOIUrl":null,"url":null,"abstract":"<div><div>The tensor product of two holomorphic discrete series representations of <span><math><mi>S</mi><mi>U</mi><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> can be decomposed as a direct multiplicity-free sum of infinitely many holomorphic discrete series representations. I shall introduce equivariant quantum channels for each component of the direct sum by mapping the tensor product of an operator and the identity onto the projection onto one of the irreducible components, generalizing the construction of pure equivariant quantum channels for compact groups. Then I calculate the functional calculus of this operator for polynomials and prove a limit formula for the trace of the functional calculus for any differentiable function. The methods I used are the theory of reproducing kernel Hilbert spaces and a Plancherel theorem for the disk <span><math><mi>D</mi><mo>=</mo><mi>S</mi><mi>U</mi><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, together with exact constants for the eigenvalues of the Berezin transform. I prove that the limit of the trace of the functional calculus can be expressed using generalized Husimi functions or using Berezin transforms.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 111036"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional calculus of quantum channels for the holomorphic discrete series of SU(1,1)\",\"authors\":\"Robin van Haastrecht\",\"doi\":\"10.1016/j.jfa.2025.111036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The tensor product of two holomorphic discrete series representations of <span><math><mi>S</mi><mi>U</mi><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> can be decomposed as a direct multiplicity-free sum of infinitely many holomorphic discrete series representations. I shall introduce equivariant quantum channels for each component of the direct sum by mapping the tensor product of an operator and the identity onto the projection onto one of the irreducible components, generalizing the construction of pure equivariant quantum channels for compact groups. Then I calculate the functional calculus of this operator for polynomials and prove a limit formula for the trace of the functional calculus for any differentiable function. The methods I used are the theory of reproducing kernel Hilbert spaces and a Plancherel theorem for the disk <span><math><mi>D</mi><mo>=</mo><mi>S</mi><mi>U</mi><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, together with exact constants for the eigenvalues of the Berezin transform. I prove that the limit of the trace of the functional calculus can be expressed using generalized Husimi functions or using Berezin transforms.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 6\",\"pages\":\"Article 111036\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625002186\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002186","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

SU(1,1)的两个全纯离散级数表示的张量积可以分解为无穷多个全纯离散级数表示的直接无乘性和。我将通过将算子和单位的张量积映射到其中一个不可约分量的投影上,为直和的每个分量引入等变量子通道,推广紧群的纯等变量子通道的构造。然后计算了该算子对多项式的泛函演算,并证明了对任意可微函数的泛函演算轨迹的极限公式。我使用的方法是再现核希尔伯特空间的理论和圆盘D=SU(1,1)/U(1)的Plancherel定理,以及Berezin变换的特征值的精确常数。证明了泛函微积分迹的极限可以用广义胡西米函数或贝列津变换表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional calculus of quantum channels for the holomorphic discrete series of SU(1,1)
The tensor product of two holomorphic discrete series representations of SU(1,1) can be decomposed as a direct multiplicity-free sum of infinitely many holomorphic discrete series representations. I shall introduce equivariant quantum channels for each component of the direct sum by mapping the tensor product of an operator and the identity onto the projection onto one of the irreducible components, generalizing the construction of pure equivariant quantum channels for compact groups. Then I calculate the functional calculus of this operator for polynomials and prove a limit formula for the trace of the functional calculus for any differentiable function. The methods I used are the theory of reproducing kernel Hilbert spaces and a Plancherel theorem for the disk D=SU(1,1)/U(1), together with exact constants for the eigenvalues of the Berezin transform. I prove that the limit of the trace of the functional calculus can be expressed using generalized Husimi functions or using Berezin transforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信