{"title":"具有最大特征值多重性的线形图","authors":"Wenhao Zhen, Dein Wong , Songnian Xu","doi":"10.1016/j.disc.2025.114562","DOIUrl":null,"url":null,"abstract":"<div><div>For a connected graph <em>G</em>, we denote by <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo></math></span>, <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> the line graph of <em>G</em>, the eigenvalue multiplicity of <em>λ</em> in <em>G</em>, the cyclomatic number and the number of pendant vertices in <em>G</em>, respectively. In 2023, Yang et al. <span><span>[12]</span></span> proved that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>≤</mo><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span> for any tree <em>T</em> with <span><math><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>≥</mo><mn>3</mn></math></span>, and characterized all trees <em>T</em> with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. In 2024, Chang et al. <span><span>[2]</span></span> proved that, if <em>G</em> is not a cycle, then <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>, and they characterized all graphs <em>G</em> with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. The authors of <span><span>[2]</span></span> particularly stated that it seems somewhat difficult to characterize the extremal graphs <em>G</em> with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span> for an arbitrary eigenvalue <em>λ</em> of <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In this paper, we give this problem a complete solution.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114562"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Line graphs with the largest eigenvalue multiplicity\",\"authors\":\"Wenhao Zhen, Dein Wong , Songnian Xu\",\"doi\":\"10.1016/j.disc.2025.114562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a connected graph <em>G</em>, we denote by <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo></math></span>, <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> the line graph of <em>G</em>, the eigenvalue multiplicity of <em>λ</em> in <em>G</em>, the cyclomatic number and the number of pendant vertices in <em>G</em>, respectively. In 2023, Yang et al. <span><span>[12]</span></span> proved that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>≤</mo><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span> for any tree <em>T</em> with <span><math><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>≥</mo><mn>3</mn></math></span>, and characterized all trees <em>T</em> with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. In 2024, Chang et al. <span><span>[2]</span></span> proved that, if <em>G</em> is not a cycle, then <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>, and they characterized all graphs <em>G</em> with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. The authors of <span><span>[2]</span></span> particularly stated that it seems somewhat difficult to characterize the extremal graphs <em>G</em> with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span> for an arbitrary eigenvalue <em>λ</em> of <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In this paper, we give this problem a complete solution.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 9\",\"pages\":\"Article 114562\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001700\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001700","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于连通图G,我们分别用L(G), mG(λ), c(G)和p(G)表示G的线形图,G中λ的特征值多重性,G中的圈数和垂顶点数。2023年,Yang等人[12]证明了对于p(T)≥3的任意树T, mL(T)(λ)≤p(T)−1,并刻画了mL(T)(λ)=p(T)−1的所有树T。Chang et al.[2]在2024年证明,如果G不是一个循环,则mL(G)(λ)≤2c(G)+p(G)−1,并且他们用mL(G)(−1)=2c(G)+p(G)−1刻画了所有图G。[2]的作者特别指出,对于L(G)的任意特征值λ,用mL(G)(λ)=2c(G)+p(G)−1来刻画极值图G似乎有些困难。在本文中,我们给出了一个完整的解决方案。
Line graphs with the largest eigenvalue multiplicity
For a connected graph G, we denote by , , and the line graph of G, the eigenvalue multiplicity of λ in G, the cyclomatic number and the number of pendant vertices in G, respectively. In 2023, Yang et al. [12] proved that for any tree T with , and characterized all trees T with . In 2024, Chang et al. [2] proved that, if G is not a cycle, then , and they characterized all graphs G with . The authors of [2] particularly stated that it seems somewhat difficult to characterize the extremal graphs G with for an arbitrary eigenvalue λ of . In this paper, we give this problem a complete solution.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.