{"title":"间歇微曝气强化厌氧消化:铁(III)/铁(II)循环和活性氧的关键作用","authors":"Xuepeng Wang, Jinshuo Zhang, Bowen Yang, Haohao Mao, Qilin Yu and Yaobin Zhang*, ","doi":"10.1021/acs.est.5c0418710.1021/acs.est.5c04187","DOIUrl":null,"url":null,"abstract":"<p >Microaeration has been reported to improve anaerobic digestion, which is generally attributed to increased microbial diversity, but a thorough explanation is lacking. In this study, it was found that intermittent microaeration (IMA) supplied to an anaerobic digester could oxidize Fe(II) produced by dissimilatory iron reduction (DIR) to form a Fe(III)/Fe(II) cycle and generate extracellular reactive oxygen species (ROS) to improve anaerobic treatment of phenol-containing wastewater. The results showed that compared to the control group without IMA, the removal rates of COD and phenol increased by 29.54 and 49.68 percentage points, respectively, and daily average methane production increased by 85.44%. The Fe(III)/Fe(II) cycle slowed down the loss of iron (13.97%) released from sludge due to the lower solubility of Fe(III) and facilitated <sup>•</sup>OH generation (1.22 ± 0.04 μM) via Fenton-like reactions. The DIR and the generation of <sup>•</sup>OH accelerated phenol degradation. Metagenomic analysis revealed that the abundance of methanogens and antioxidant enzymes-encoding genes in response to oxidative stress significantly increased in the IMA group compared to the control, enabling methanogenesis to proceed smoothly under microaeration. This study investigated the extracellular ROS generation induced by microaeration during anaerobic digestion and their roles in promoting anaerobic performance, thereby providing a new perspective for optimizing anaerobic systems with microaeration.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"59 17","pages":"8629–8639 8629–8639"},"PeriodicalIF":11.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intermittent Microaeration Enhanced Anaerobic Digestion: The Key Role of Fe(III)/Fe(II) Cycle and Reactive Oxygen Species\",\"authors\":\"Xuepeng Wang, Jinshuo Zhang, Bowen Yang, Haohao Mao, Qilin Yu and Yaobin Zhang*, \",\"doi\":\"10.1021/acs.est.5c0418710.1021/acs.est.5c04187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Microaeration has been reported to improve anaerobic digestion, which is generally attributed to increased microbial diversity, but a thorough explanation is lacking. In this study, it was found that intermittent microaeration (IMA) supplied to an anaerobic digester could oxidize Fe(II) produced by dissimilatory iron reduction (DIR) to form a Fe(III)/Fe(II) cycle and generate extracellular reactive oxygen species (ROS) to improve anaerobic treatment of phenol-containing wastewater. The results showed that compared to the control group without IMA, the removal rates of COD and phenol increased by 29.54 and 49.68 percentage points, respectively, and daily average methane production increased by 85.44%. The Fe(III)/Fe(II) cycle slowed down the loss of iron (13.97%) released from sludge due to the lower solubility of Fe(III) and facilitated <sup>•</sup>OH generation (1.22 ± 0.04 μM) via Fenton-like reactions. The DIR and the generation of <sup>•</sup>OH accelerated phenol degradation. Metagenomic analysis revealed that the abundance of methanogens and antioxidant enzymes-encoding genes in response to oxidative stress significantly increased in the IMA group compared to the control, enabling methanogenesis to proceed smoothly under microaeration. This study investigated the extracellular ROS generation induced by microaeration during anaerobic digestion and their roles in promoting anaerobic performance, thereby providing a new perspective for optimizing anaerobic systems with microaeration.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"59 17\",\"pages\":\"8629–8639 8629–8639\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.5c04187\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.5c04187","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Intermittent Microaeration Enhanced Anaerobic Digestion: The Key Role of Fe(III)/Fe(II) Cycle and Reactive Oxygen Species
Microaeration has been reported to improve anaerobic digestion, which is generally attributed to increased microbial diversity, but a thorough explanation is lacking. In this study, it was found that intermittent microaeration (IMA) supplied to an anaerobic digester could oxidize Fe(II) produced by dissimilatory iron reduction (DIR) to form a Fe(III)/Fe(II) cycle and generate extracellular reactive oxygen species (ROS) to improve anaerobic treatment of phenol-containing wastewater. The results showed that compared to the control group without IMA, the removal rates of COD and phenol increased by 29.54 and 49.68 percentage points, respectively, and daily average methane production increased by 85.44%. The Fe(III)/Fe(II) cycle slowed down the loss of iron (13.97%) released from sludge due to the lower solubility of Fe(III) and facilitated •OH generation (1.22 ± 0.04 μM) via Fenton-like reactions. The DIR and the generation of •OH accelerated phenol degradation. Metagenomic analysis revealed that the abundance of methanogens and antioxidant enzymes-encoding genes in response to oxidative stress significantly increased in the IMA group compared to the control, enabling methanogenesis to proceed smoothly under microaeration. This study investigated the extracellular ROS generation induced by microaeration during anaerobic digestion and their roles in promoting anaerobic performance, thereby providing a new perspective for optimizing anaerobic systems with microaeration.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.