具有同手性的立体异构体短肽聚类的手性反转

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yan Wang, Yurong Zhao, Henghao Yu, Kai Qi, Zhenhua Xie, Xinfeng Ju, Muhan Wang, Yuanhao Jiang, Kate Alston, Hua He, Yubin Ke, Jiqian Wang, Kai Tao*, Xuzhi Hu*, Feng Zhou, Jian Ren Lu and Hai Xu*, 
{"title":"具有同手性的立体异构体短肽聚类的手性反转","authors":"Yan Wang,&nbsp;Yurong Zhao,&nbsp;Henghao Yu,&nbsp;Kai Qi,&nbsp;Zhenhua Xie,&nbsp;Xinfeng Ju,&nbsp;Muhan Wang,&nbsp;Yuanhao Jiang,&nbsp;Kate Alston,&nbsp;Hua He,&nbsp;Yubin Ke,&nbsp;Jiqian Wang,&nbsp;Kai Tao*,&nbsp;Xuzhi Hu*,&nbsp;Feng Zhou,&nbsp;Jian Ren Lu and Hai Xu*,&nbsp;","doi":"10.1021/acsnano.5c0242510.1021/acsnano.5c02425","DOIUrl":null,"url":null,"abstract":"<p >Despite numerous reports devoted to chirality inversion during the self-assembly of single chiral components, chirality inversion in the coassembly of two or more chiral components remains largely unexplored. Here we report the supramolecular chirality inversion via the coassembly of the two different stereoisomers of a minimalistic amphiphilic I<sub>3</sub>K sequence with like-handedness in their self-sorting assembly. The coassembled nanofibrils exhibit noticeable helix inversion in a wide range of mixing ratios, compared to individual peptide nanofibrils. Theoretical simulations reveal that to facilitate the interstrand H-bonding between isomeric β-strands within a mixed β-sheet, those with a homochiral backbone will undergo chirality inversion due to their structural flexibility. The inverted strands with two heterogeneous interfaces within the sheet typically display larger twisting degrees and are responsible for inducing helix inversion of the sheet and final β-sheet nanofibrils, and thus, helix inversion of the final nanofibrils can be regulated by tuning the ratio of the two components. This study lays a foundation for manipulating the suprastructure chirality of peptide bionanomaterials through coassembly.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 17","pages":"16930–16939 16930–16939"},"PeriodicalIF":16.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chirality Inversion upon Coassembly of Stereoisomeric Short Peptides with Like-Handedness\",\"authors\":\"Yan Wang,&nbsp;Yurong Zhao,&nbsp;Henghao Yu,&nbsp;Kai Qi,&nbsp;Zhenhua Xie,&nbsp;Xinfeng Ju,&nbsp;Muhan Wang,&nbsp;Yuanhao Jiang,&nbsp;Kate Alston,&nbsp;Hua He,&nbsp;Yubin Ke,&nbsp;Jiqian Wang,&nbsp;Kai Tao*,&nbsp;Xuzhi Hu*,&nbsp;Feng Zhou,&nbsp;Jian Ren Lu and Hai Xu*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c0242510.1021/acsnano.5c02425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Despite numerous reports devoted to chirality inversion during the self-assembly of single chiral components, chirality inversion in the coassembly of two or more chiral components remains largely unexplored. Here we report the supramolecular chirality inversion via the coassembly of the two different stereoisomers of a minimalistic amphiphilic I<sub>3</sub>K sequence with like-handedness in their self-sorting assembly. The coassembled nanofibrils exhibit noticeable helix inversion in a wide range of mixing ratios, compared to individual peptide nanofibrils. Theoretical simulations reveal that to facilitate the interstrand H-bonding between isomeric β-strands within a mixed β-sheet, those with a homochiral backbone will undergo chirality inversion due to their structural flexibility. The inverted strands with two heterogeneous interfaces within the sheet typically display larger twisting degrees and are responsible for inducing helix inversion of the sheet and final β-sheet nanofibrils, and thus, helix inversion of the final nanofibrils can be regulated by tuning the ratio of the two components. This study lays a foundation for manipulating the suprastructure chirality of peptide bionanomaterials through coassembly.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 17\",\"pages\":\"16930–16939 16930–16939\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c02425\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c02425","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管有许多报道致力于研究单手性组分自组装过程中的手性反转,但两个或多个手性组分共组装过程中的手性反转在很大程度上仍未被探索。在这里,我们报道了超分子手性反转,通过两个不同的极简两亲性I3K序列的立体异构体的共组装,在它们的自分类组装中具有类似的手性。与单个肽纳米原纤维相比,共组装的纳米原纤维在广泛的混合比例下表现出明显的螺旋反转。理论模拟表明,为了促进混合β-片内同分异构体β-链之间的链间氢键形成,具有同手性主链的β-链由于其结构柔韧性会发生手性反转。片内具有两个非均质界面的倒链通常显示较大的扭曲程度,并负责诱导片和最终β-片纳米原纤维的螺旋反转,因此,可以通过调节两组分的比例来调节最终纳米原纤维的螺旋反转。本研究为通过共组装操纵肽类生物纳米材料的超结构手性奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chirality Inversion upon Coassembly of Stereoisomeric Short Peptides with Like-Handedness

Chirality Inversion upon Coassembly of Stereoisomeric Short Peptides with Like-Handedness

Despite numerous reports devoted to chirality inversion during the self-assembly of single chiral components, chirality inversion in the coassembly of two or more chiral components remains largely unexplored. Here we report the supramolecular chirality inversion via the coassembly of the two different stereoisomers of a minimalistic amphiphilic I3K sequence with like-handedness in their self-sorting assembly. The coassembled nanofibrils exhibit noticeable helix inversion in a wide range of mixing ratios, compared to individual peptide nanofibrils. Theoretical simulations reveal that to facilitate the interstrand H-bonding between isomeric β-strands within a mixed β-sheet, those with a homochiral backbone will undergo chirality inversion due to their structural flexibility. The inverted strands with two heterogeneous interfaces within the sheet typically display larger twisting degrees and are responsible for inducing helix inversion of the sheet and final β-sheet nanofibrils, and thus, helix inversion of the final nanofibrils can be regulated by tuning the ratio of the two components. This study lays a foundation for manipulating the suprastructure chirality of peptide bionanomaterials through coassembly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信