通过控制泵浦脉冲功率和形状,利用基于dfg的非线性相互作用对非简并信号脉冲进行压缩和放大

IF 2.2 3区 物理与天体物理 Q2 OPTICS
Hamid Nadgaran , Mohammad Amin Izadi , Rahman Nouroozi
{"title":"通过控制泵浦脉冲功率和形状,利用基于dfg的非线性相互作用对非简并信号脉冲进行压缩和放大","authors":"Hamid Nadgaran ,&nbsp;Mohammad Amin Izadi ,&nbsp;Rahman Nouroozi","doi":"10.1016/j.optcom.2025.131894","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the simultaneous amplification and compression of signal and idler pulses through the nonlinear difference-frequency generation (DFG) process in quasi-phase-matched Ti in-diffused LiNbO<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> (LNB) nonlinear optical waveguides. Using the split-step Fourier transform numerical method, we demonstrate that pulsed pump sources can achieve simultaneous amplification and compression of signal and idler pulses, provided the slope of the idler pulse peak growth (<span><math><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>) relative to the idler energy conversion efficiency (<span><math><msubsup><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>i</mi></mrow></msubsup></math></span>) remains positive. Under optimized conditions, signal energy conversion efficiency (<span><math><msubsup><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup></math></span>) reaches up to <span><math><mrow><mn>22</mn><mo>.</mo><mn>7</mn><mspace></mspace><mstyle><mi>d</mi><mi>B</mi></mstyle></mrow></math></span>, with the full width at half maximum (FWHM) of the resultant signal pulses reduced from <span><math><mrow><mn>10</mn><mspace></mspace><mstyle><mi>p</mi><mi>s</mi></mstyle></mrow></math></span> to <span><math><mrow><mn>4</mn><mo>.</mo><mn>9</mn><mspace></mspace><mstyle><mi>p</mi><mi>s</mi></mstyle></mrow></math></span> ps at a propagation length of <span><math><mrow><mn>20</mn><mspace></mspace><mstyle><mi>m</mi><mi>m</mi></mstyle></mrow></math></span>. Furthermore, employing pump pulses with shorter FWHM (FWHM = <span><math><mrow><mn>5</mn><mspace></mspace><mstyle><mi>p</mi><mi>s</mi></mstyle></mrow></math></span>) than the initial signal pulses, enhances compression and amplification, achieving an FWHM of <span><math><mrow><mn>3</mn><mo>.</mo><mn>32</mn><mspace></mspace><mstyle><mi>p</mi><mi>s</mi></mstyle></mrow></math></span> for the signal pulses with initial FWHM of <span><math><mrow><mn>10</mn><mspace></mspace><mstyle><mi>p</mi><mi>s</mi></mstyle></mrow></math></span>. Also, <span><math><msubsup><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup></math></span> reaches to <span><math><mrow><mn>12</mn><mo>.</mo><mn>8</mn><mspace></mspace><mstyle><mi>d</mi><mi>B</mi></mstyle></mrow></math></span>. In a realistic scenario involving a 50 km conventional single-mode fiber (CSF), severely distorted pulses with an FWHM of <span><math><mrow><mn>300</mn><mspace></mspace><mstyle><mi>p</mi><mi>s</mi></mstyle></mrow></math></span> and <span><math><mrow><mo>&gt;</mo><mn>90</mn><mstyle><mtext>%</mtext></mstyle></mrow></math></span> energy loss are successfully amplified to <span><math><mrow><msubsup><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>=</mo><mn>10</mn><mo>.</mo><mn>9</mn><mspace></mspace><mstyle><mi>d</mi><mi>B</mi></mstyle></mrow></math></span> and compressed to an FWHM of <span><math><mrow><mn>1</mn><mo>.</mo><mn>5</mn><mspace></mspace><mstyle><mi>p</mi><mi>s</mi></mstyle></mrow></math></span> using a super-Gaussian pump pulse (order <span><math><mrow><mi>m</mi><mo>=</mo><mn>5</mn></mrow></math></span>) over a <span><math><mrow><mn>20</mn><mspace></mspace><mstyle><mi>m</mi><mi>m</mi></mstyle></mrow></math></span> nonlinear waveguide. Compared to conventional methods requiring a few meters of erbium-doped fiber amplifiers (EDFAs) and kilometers of dispersion-compensating fibers, this work proposes a compact and efficient approach utilizing DFG in Ti:LNB waveguides, achieving simultaneous amplification and compression within a few centimeters. This novel method holds significant potential for advancing compact photonic devices and high-efficiency pulse processing systems.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"587 ","pages":"Article 131894"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-degenerate signal pulse compression and amplification using DFG-based nonlinear interaction via controlling pump pulse power and shape\",\"authors\":\"Hamid Nadgaran ,&nbsp;Mohammad Amin Izadi ,&nbsp;Rahman Nouroozi\",\"doi\":\"10.1016/j.optcom.2025.131894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the simultaneous amplification and compression of signal and idler pulses through the nonlinear difference-frequency generation (DFG) process in quasi-phase-matched Ti in-diffused LiNbO<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> (LNB) nonlinear optical waveguides. Using the split-step Fourier transform numerical method, we demonstrate that pulsed pump sources can achieve simultaneous amplification and compression of signal and idler pulses, provided the slope of the idler pulse peak growth (<span><math><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>) relative to the idler energy conversion efficiency (<span><math><msubsup><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>i</mi></mrow></msubsup></math></span>) remains positive. Under optimized conditions, signal energy conversion efficiency (<span><math><msubsup><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup></math></span>) reaches up to <span><math><mrow><mn>22</mn><mo>.</mo><mn>7</mn><mspace></mspace><mstyle><mi>d</mi><mi>B</mi></mstyle></mrow></math></span>, with the full width at half maximum (FWHM) of the resultant signal pulses reduced from <span><math><mrow><mn>10</mn><mspace></mspace><mstyle><mi>p</mi><mi>s</mi></mstyle></mrow></math></span> to <span><math><mrow><mn>4</mn><mo>.</mo><mn>9</mn><mspace></mspace><mstyle><mi>p</mi><mi>s</mi></mstyle></mrow></math></span> ps at a propagation length of <span><math><mrow><mn>20</mn><mspace></mspace><mstyle><mi>m</mi><mi>m</mi></mstyle></mrow></math></span>. Furthermore, employing pump pulses with shorter FWHM (FWHM = <span><math><mrow><mn>5</mn><mspace></mspace><mstyle><mi>p</mi><mi>s</mi></mstyle></mrow></math></span>) than the initial signal pulses, enhances compression and amplification, achieving an FWHM of <span><math><mrow><mn>3</mn><mo>.</mo><mn>32</mn><mspace></mspace><mstyle><mi>p</mi><mi>s</mi></mstyle></mrow></math></span> for the signal pulses with initial FWHM of <span><math><mrow><mn>10</mn><mspace></mspace><mstyle><mi>p</mi><mi>s</mi></mstyle></mrow></math></span>. Also, <span><math><msubsup><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup></math></span> reaches to <span><math><mrow><mn>12</mn><mo>.</mo><mn>8</mn><mspace></mspace><mstyle><mi>d</mi><mi>B</mi></mstyle></mrow></math></span>. In a realistic scenario involving a 50 km conventional single-mode fiber (CSF), severely distorted pulses with an FWHM of <span><math><mrow><mn>300</mn><mspace></mspace><mstyle><mi>p</mi><mi>s</mi></mstyle></mrow></math></span> and <span><math><mrow><mo>&gt;</mo><mn>90</mn><mstyle><mtext>%</mtext></mstyle></mrow></math></span> energy loss are successfully amplified to <span><math><mrow><msubsup><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>=</mo><mn>10</mn><mo>.</mo><mn>9</mn><mspace></mspace><mstyle><mi>d</mi><mi>B</mi></mstyle></mrow></math></span> and compressed to an FWHM of <span><math><mrow><mn>1</mn><mo>.</mo><mn>5</mn><mspace></mspace><mstyle><mi>p</mi><mi>s</mi></mstyle></mrow></math></span> using a super-Gaussian pump pulse (order <span><math><mrow><mi>m</mi><mo>=</mo><mn>5</mn></mrow></math></span>) over a <span><math><mrow><mn>20</mn><mspace></mspace><mstyle><mi>m</mi><mi>m</mi></mstyle></mrow></math></span> nonlinear waveguide. Compared to conventional methods requiring a few meters of erbium-doped fiber amplifiers (EDFAs) and kilometers of dispersion-compensating fibers, this work proposes a compact and efficient approach utilizing DFG in Ti:LNB waveguides, achieving simultaneous amplification and compression within a few centimeters. This novel method holds significant potential for advancing compact photonic devices and high-efficiency pulse processing systems.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"587 \",\"pages\":\"Article 131894\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401825004225\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825004225","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了准相位匹配Ti扩散LiNbO3 (LNB)非线性光波导中信号和空闲脉冲通过非线性差频产生(DFG)过程同时放大和压缩。利用分步傅里叶变换数值方法,我们证明了脉冲泵源可以同时实现信号和惰流脉冲的放大和压缩,只要惰流脉冲峰值增长(η2)相对于惰流能量转换效率(η1i)的斜率保持为正。在优化条件下,信号能量转换效率(η1s)达到22.7dB,在传输长度为20mm时,信号脉冲的半最大全宽(FWHM)从10ps降低到4.9ps。此外,采用比初始信号脉冲FWHM (FWHM = 5ps)更短的泵浦脉冲,增强了压缩和放大能力,对于初始FWHM为10ps的信号脉冲,FWHM达到了3.32ps。η1s可达12.8dB。在涉及50公里传统单模光纤(CSF)的实际场景中,使用超高斯泵浦脉冲(阶数m=5)在20mm非线性波导上,成功地将FWHM为300ps、能量损失为>;90%的严重失真脉冲放大到η1s=10.9dB,并压缩到FWHM为1.5ps。与需要几米掺铒光纤放大器(edfa)和几公里色散补偿光纤的传统方法相比,这项工作提出了一种紧凑高效的方法,利用Ti:LNB波导中的DFG,在几厘米内实现同时放大和压缩。这种新方法在推进紧凑光子器件和高效脉冲处理系统方面具有重要的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-degenerate signal pulse compression and amplification using DFG-based nonlinear interaction via controlling pump pulse power and shape
This study investigates the simultaneous amplification and compression of signal and idler pulses through the nonlinear difference-frequency generation (DFG) process in quasi-phase-matched Ti in-diffused LiNbO3 (LNB) nonlinear optical waveguides. Using the split-step Fourier transform numerical method, we demonstrate that pulsed pump sources can achieve simultaneous amplification and compression of signal and idler pulses, provided the slope of the idler pulse peak growth (η2) relative to the idler energy conversion efficiency (η1i) remains positive. Under optimized conditions, signal energy conversion efficiency (η1s) reaches up to 22.7dB, with the full width at half maximum (FWHM) of the resultant signal pulses reduced from 10ps to 4.9ps ps at a propagation length of 20mm. Furthermore, employing pump pulses with shorter FWHM (FWHM = 5ps) than the initial signal pulses, enhances compression and amplification, achieving an FWHM of 3.32ps for the signal pulses with initial FWHM of 10ps. Also, η1s reaches to 12.8dB. In a realistic scenario involving a 50 km conventional single-mode fiber (CSF), severely distorted pulses with an FWHM of 300ps and >90% energy loss are successfully amplified to η1s=10.9dB and compressed to an FWHM of 1.5ps using a super-Gaussian pump pulse (order m=5) over a 20mm nonlinear waveguide. Compared to conventional methods requiring a few meters of erbium-doped fiber amplifiers (EDFAs) and kilometers of dispersion-compensating fibers, this work proposes a compact and efficient approach utilizing DFG in Ti:LNB waveguides, achieving simultaneous amplification and compression within a few centimeters. This novel method holds significant potential for advancing compact photonic devices and high-efficiency pulse processing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信