高指数马鞍动力学预测校正方案的误差估计

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Wenhao Li , Haotian Lin , Xiaojie Wang
{"title":"高指数马鞍动力学预测校正方案的误差估计","authors":"Wenhao Li ,&nbsp;Haotian Lin ,&nbsp;Xiaojie Wang","doi":"10.1016/j.cnsns.2025.108852","DOIUrl":null,"url":null,"abstract":"<div><div>High-index saddle dynamics provide an effective way to search for any-index saddle points and construct the solution landscape. In this paper, we propose and analyze a predictor–corrector numerical method for solving high-index saddle dynamics. Error bounds of the discretization scheme are proved to be of second order with respect to the time step size, which do not require the numerical solutions of the directional variables to be orthonormalized. When the step-size shrinks to zero, the numerical solutions of directional variables in every step are shown to be almost orthonormal. Numerical experiments confirm our theoretical results.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"149 ","pages":"Article 108852"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error estimates of a predictor-corrector scheme for high-index saddle dynamics\",\"authors\":\"Wenhao Li ,&nbsp;Haotian Lin ,&nbsp;Xiaojie Wang\",\"doi\":\"10.1016/j.cnsns.2025.108852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-index saddle dynamics provide an effective way to search for any-index saddle points and construct the solution landscape. In this paper, we propose and analyze a predictor–corrector numerical method for solving high-index saddle dynamics. Error bounds of the discretization scheme are proved to be of second order with respect to the time step size, which do not require the numerical solutions of the directional variables to be orthonormalized. When the step-size shrinks to zero, the numerical solutions of directional variables in every step are shown to be almost orthonormal. Numerical experiments confirm our theoretical results.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"149 \",\"pages\":\"Article 108852\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570425002631\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425002631","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

高指数鞍区动力学为搜索任意指数鞍区点和构建解景观提供了有效途径。本文提出并分析了一种求解高指数马鞍动力学的预测校正数值方法。证明了离散化方案的误差界相对于时间步长是二阶的,不需要对方向变量的数值解进行正交一化。当步长减小到零时,每一步中方向变量的数值解几乎是标准正交的。数值实验证实了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error estimates of a predictor-corrector scheme for high-index saddle dynamics
High-index saddle dynamics provide an effective way to search for any-index saddle points and construct the solution landscape. In this paper, we propose and analyze a predictor–corrector numerical method for solving high-index saddle dynamics. Error bounds of the discretization scheme are proved to be of second order with respect to the time step size, which do not require the numerical solutions of the directional variables to be orthonormalized. When the step-size shrinks to zero, the numerical solutions of directional variables in every step are shown to be almost orthonormal. Numerical experiments confirm our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信