{"title":"基于群智能的太赫兹(THz)无人机网络定位和功率控制","authors":"Enis Körpe , Mustafa Alper Akkaş , Yavuz Öztürk","doi":"10.1016/j.adhoc.2025.103892","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, terahertz (THz) communication has gained significant attention as a transformative technology for high-speed wireless networks, addressing the limitations of conventional frequency bands in meeting the escalating demand for data transmission. THz communication is particularly critical in vehicle-to-everything (V2X) and unmanned aerial vehicle (UAV)-based communication networks, where ultra-low latency, high bandwidth, and reliable connectivity are essential. Operating in the frequency spectrum between the microwave and infrared bands, THz communication offers the potential for multi-gigabit data transmission rates, rendering it a promising enabler for next-generation intelligent transportation systems, autonomous vehicles, and UAV-supported applications. Furthermore, artificial intelligence (AI) emerges as a pivotal tool to enhance the reliability and efficiency of THz-based V2X and UAV communication networks by enabling the prediction of network traffic patterns and mobility dynamics. This study introduces a swarm intelligence-based AI approach designed to optimize system performance by minimizing latency and transmission power requirements while ensuring the required signal-to-noise ratio (SNR) within a UAV-assisted vehicular network operating in the THz band. The proposed methodology employs a dual-objective optimization framework that balances latency and transmission power within a predefined communication time frame. Comparative analysis is conducted between a baseline network with randomly distributed UAVs and a network employing UAV deployment guided by the proposed AI scheme. Also, the performance of proposed method is compared with existing swarm intelligence algorithms. Performance metrics, including SNR and latency, are evaluated to assess the system’s efficacy. The channel modeling process leverages the Line-by-Line Radiative Transfer Model (LBLRTM) to characterize the propagation environment in the UAV-assisted vehicular network.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"176 ","pages":"Article 103892"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Swarm intelligence-inspired localization and power control for terahertz (THz) UAV-vehicle networks\",\"authors\":\"Enis Körpe , Mustafa Alper Akkaş , Yavuz Öztürk\",\"doi\":\"10.1016/j.adhoc.2025.103892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, terahertz (THz) communication has gained significant attention as a transformative technology for high-speed wireless networks, addressing the limitations of conventional frequency bands in meeting the escalating demand for data transmission. THz communication is particularly critical in vehicle-to-everything (V2X) and unmanned aerial vehicle (UAV)-based communication networks, where ultra-low latency, high bandwidth, and reliable connectivity are essential. Operating in the frequency spectrum between the microwave and infrared bands, THz communication offers the potential for multi-gigabit data transmission rates, rendering it a promising enabler for next-generation intelligent transportation systems, autonomous vehicles, and UAV-supported applications. Furthermore, artificial intelligence (AI) emerges as a pivotal tool to enhance the reliability and efficiency of THz-based V2X and UAV communication networks by enabling the prediction of network traffic patterns and mobility dynamics. This study introduces a swarm intelligence-based AI approach designed to optimize system performance by minimizing latency and transmission power requirements while ensuring the required signal-to-noise ratio (SNR) within a UAV-assisted vehicular network operating in the THz band. The proposed methodology employs a dual-objective optimization framework that balances latency and transmission power within a predefined communication time frame. Comparative analysis is conducted between a baseline network with randomly distributed UAVs and a network employing UAV deployment guided by the proposed AI scheme. Also, the performance of proposed method is compared with existing swarm intelligence algorithms. Performance metrics, including SNR and latency, are evaluated to assess the system’s efficacy. The channel modeling process leverages the Line-by-Line Radiative Transfer Model (LBLRTM) to characterize the propagation environment in the UAV-assisted vehicular network.</div></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":\"176 \",\"pages\":\"Article 103892\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870525001404\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870525001404","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Swarm intelligence-inspired localization and power control for terahertz (THz) UAV-vehicle networks
In recent years, terahertz (THz) communication has gained significant attention as a transformative technology for high-speed wireless networks, addressing the limitations of conventional frequency bands in meeting the escalating demand for data transmission. THz communication is particularly critical in vehicle-to-everything (V2X) and unmanned aerial vehicle (UAV)-based communication networks, where ultra-low latency, high bandwidth, and reliable connectivity are essential. Operating in the frequency spectrum between the microwave and infrared bands, THz communication offers the potential for multi-gigabit data transmission rates, rendering it a promising enabler for next-generation intelligent transportation systems, autonomous vehicles, and UAV-supported applications. Furthermore, artificial intelligence (AI) emerges as a pivotal tool to enhance the reliability and efficiency of THz-based V2X and UAV communication networks by enabling the prediction of network traffic patterns and mobility dynamics. This study introduces a swarm intelligence-based AI approach designed to optimize system performance by minimizing latency and transmission power requirements while ensuring the required signal-to-noise ratio (SNR) within a UAV-assisted vehicular network operating in the THz band. The proposed methodology employs a dual-objective optimization framework that balances latency and transmission power within a predefined communication time frame. Comparative analysis is conducted between a baseline network with randomly distributed UAVs and a network employing UAV deployment guided by the proposed AI scheme. Also, the performance of proposed method is compared with existing swarm intelligence algorithms. Performance metrics, including SNR and latency, are evaluated to assess the system’s efficacy. The channel modeling process leverages the Line-by-Line Radiative Transfer Model (LBLRTM) to characterize the propagation environment in the UAV-assisted vehicular network.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.