{"title":"脐带和骨髓间充质干细胞脂肪细胞分化过程中初级纤毛形成和伸长的不同时间动态","authors":"Masako Hirai , Naokazu Inoue , Tomoaki Nagai , Michiru Nishita","doi":"10.1016/j.bbrc.2025.151918","DOIUrl":null,"url":null,"abstract":"<div><div>Umbilical cord-derived mesenchymal stem cells (UC-MSCs) are considered a promising alternative to bone marrow-derived MSCs (BM-MSCs) due to their high proliferative capacity and non-invasive accessibility. While UC-MSCs exhibit osteogenic, chondrogenic, and myogenic differentiation potential comparable to BM-MSCs, their adipogenic differentiation is significantly delayed. To investigate the underlying mechanisms, we focused on primary cilia, sensory organelles that regulate key adipogenic signaling pathways, including the insulin-Akt axis. Under serum-starved, growth-arrest conditions, both UC-MSCs and BM-MSCs formed primary cilia at similar frequencies and lengths; however, under serum-fed, proliferative conditions, UC-MSCs showed a significantly lower frequency of ciliation. During adipogenesis, BM-MSCs exhibited early ciliogenesis and stable cilium length, whereas UC-MSCs displayed delayed ciliogenesis and developed significantly longer cilia after repeated induction cycles. Despite comparable ciliation frequency and longer cilia in UC-MSCs at later stages, insulin-induced Akt activation was reduced compared to BM-MSCs, suggesting that primary cilia in UC-MSCs may be less efficient in sensing insulin. These alterations in insulin signaling may contribute to the reduced adipogenic capacity observed in UC-MSCs.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"768 ","pages":"Article 151918"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Different temporal dynamics of primary cilia formation and elongation during adipocyte differentiation in umbilical cord- and bone marrow-derived mesenchymal stem cells\",\"authors\":\"Masako Hirai , Naokazu Inoue , Tomoaki Nagai , Michiru Nishita\",\"doi\":\"10.1016/j.bbrc.2025.151918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Umbilical cord-derived mesenchymal stem cells (UC-MSCs) are considered a promising alternative to bone marrow-derived MSCs (BM-MSCs) due to their high proliferative capacity and non-invasive accessibility. While UC-MSCs exhibit osteogenic, chondrogenic, and myogenic differentiation potential comparable to BM-MSCs, their adipogenic differentiation is significantly delayed. To investigate the underlying mechanisms, we focused on primary cilia, sensory organelles that regulate key adipogenic signaling pathways, including the insulin-Akt axis. Under serum-starved, growth-arrest conditions, both UC-MSCs and BM-MSCs formed primary cilia at similar frequencies and lengths; however, under serum-fed, proliferative conditions, UC-MSCs showed a significantly lower frequency of ciliation. During adipogenesis, BM-MSCs exhibited early ciliogenesis and stable cilium length, whereas UC-MSCs displayed delayed ciliogenesis and developed significantly longer cilia after repeated induction cycles. Despite comparable ciliation frequency and longer cilia in UC-MSCs at later stages, insulin-induced Akt activation was reduced compared to BM-MSCs, suggesting that primary cilia in UC-MSCs may be less efficient in sensing insulin. These alterations in insulin signaling may contribute to the reduced adipogenic capacity observed in UC-MSCs.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"768 \",\"pages\":\"Article 151918\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X25006321\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25006321","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Different temporal dynamics of primary cilia formation and elongation during adipocyte differentiation in umbilical cord- and bone marrow-derived mesenchymal stem cells
Umbilical cord-derived mesenchymal stem cells (UC-MSCs) are considered a promising alternative to bone marrow-derived MSCs (BM-MSCs) due to their high proliferative capacity and non-invasive accessibility. While UC-MSCs exhibit osteogenic, chondrogenic, and myogenic differentiation potential comparable to BM-MSCs, their adipogenic differentiation is significantly delayed. To investigate the underlying mechanisms, we focused on primary cilia, sensory organelles that regulate key adipogenic signaling pathways, including the insulin-Akt axis. Under serum-starved, growth-arrest conditions, both UC-MSCs and BM-MSCs formed primary cilia at similar frequencies and lengths; however, under serum-fed, proliferative conditions, UC-MSCs showed a significantly lower frequency of ciliation. During adipogenesis, BM-MSCs exhibited early ciliogenesis and stable cilium length, whereas UC-MSCs displayed delayed ciliogenesis and developed significantly longer cilia after repeated induction cycles. Despite comparable ciliation frequency and longer cilia in UC-MSCs at later stages, insulin-induced Akt activation was reduced compared to BM-MSCs, suggesting that primary cilia in UC-MSCs may be less efficient in sensing insulin. These alterations in insulin signaling may contribute to the reduced adipogenic capacity observed in UC-MSCs.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics