Yong-Tao Lv , Jin Zhang , Ting Sun , Jian Dong , Yongbao Pan , Yixin Wang , Xudong Wang , Lei Wang
{"title":"以气液分离膜为载体快速形成部分反硝化生物膜的性能及机理","authors":"Yong-Tao Lv , Jin Zhang , Ting Sun , Jian Dong , Yongbao Pan , Yixin Wang , Xudong Wang , Lei Wang","doi":"10.1016/j.biortech.2025.132611","DOIUrl":null,"url":null,"abstract":"<div><div>Partial denitrification (PD) can ensure stable supply of electron acceptors for anaerobic ammonia oxidation, and biofilm is an effective method to prevent biomass loss, which are crucial for stable operation of PD. In this study, hydrophobic hollow-fiber gas–liquid separation membranes were placed in a denitrification sequencing batch reactor, and dense biofilms were formed within just 3 days. Confocal laser microscopy showed the preferential attachment of the protein (PN) content in extracellular polymeric substances (EPS) to the membrane surface, followed by exopolysaccharides. Further analyses showed the decrease in the types of signal molecules from six to two (i.e., C4-HSL, C6-HSL) due to negative pressure operation. Importantly, the concentration of C4-HSL increased dramatically with the increase in PN concentration, suggesting that negative pressure promoted the synthesis of C4-HSL signal molecules, which further mediated the secretion of PN for biofilm formation. In addition, biofilm formation was accompanied by nitrite accumulation, leading to successful achievement of PD. Furthermore, 60 % of nitrate-to-nitrite transformation ratio was obtained even when COD/N was increased from 4.5 to 5.0 and influent nitrate concentration was reduced to 25 mg/L. This confirmed the stability of PD, which was mainly attributed to a change in the microbial community and a decrease in nitrite reductase (Nir) activity, with microorganisms enriched through the gas–liquid separation operation exhibiting low Nir activity. This study provides a new method for rapid formation of biofilm for wastewater treatment and stable operation of PD.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"431 ","pages":"Article 132611"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid formation of partial denitrification biofilm using gas–liquid separation membrane as carrier: Performance and mechanism\",\"authors\":\"Yong-Tao Lv , Jin Zhang , Ting Sun , Jian Dong , Yongbao Pan , Yixin Wang , Xudong Wang , Lei Wang\",\"doi\":\"10.1016/j.biortech.2025.132611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Partial denitrification (PD) can ensure stable supply of electron acceptors for anaerobic ammonia oxidation, and biofilm is an effective method to prevent biomass loss, which are crucial for stable operation of PD. In this study, hydrophobic hollow-fiber gas–liquid separation membranes were placed in a denitrification sequencing batch reactor, and dense biofilms were formed within just 3 days. Confocal laser microscopy showed the preferential attachment of the protein (PN) content in extracellular polymeric substances (EPS) to the membrane surface, followed by exopolysaccharides. Further analyses showed the decrease in the types of signal molecules from six to two (i.e., C4-HSL, C6-HSL) due to negative pressure operation. Importantly, the concentration of C4-HSL increased dramatically with the increase in PN concentration, suggesting that negative pressure promoted the synthesis of C4-HSL signal molecules, which further mediated the secretion of PN for biofilm formation. In addition, biofilm formation was accompanied by nitrite accumulation, leading to successful achievement of PD. Furthermore, 60 % of nitrate-to-nitrite transformation ratio was obtained even when COD/N was increased from 4.5 to 5.0 and influent nitrate concentration was reduced to 25 mg/L. This confirmed the stability of PD, which was mainly attributed to a change in the microbial community and a decrease in nitrite reductase (Nir) activity, with microorganisms enriched through the gas–liquid separation operation exhibiting low Nir activity. This study provides a new method for rapid formation of biofilm for wastewater treatment and stable operation of PD.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"431 \",\"pages\":\"Article 132611\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852425005772\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425005772","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Rapid formation of partial denitrification biofilm using gas–liquid separation membrane as carrier: Performance and mechanism
Partial denitrification (PD) can ensure stable supply of electron acceptors for anaerobic ammonia oxidation, and biofilm is an effective method to prevent biomass loss, which are crucial for stable operation of PD. In this study, hydrophobic hollow-fiber gas–liquid separation membranes were placed in a denitrification sequencing batch reactor, and dense biofilms were formed within just 3 days. Confocal laser microscopy showed the preferential attachment of the protein (PN) content in extracellular polymeric substances (EPS) to the membrane surface, followed by exopolysaccharides. Further analyses showed the decrease in the types of signal molecules from six to two (i.e., C4-HSL, C6-HSL) due to negative pressure operation. Importantly, the concentration of C4-HSL increased dramatically with the increase in PN concentration, suggesting that negative pressure promoted the synthesis of C4-HSL signal molecules, which further mediated the secretion of PN for biofilm formation. In addition, biofilm formation was accompanied by nitrite accumulation, leading to successful achievement of PD. Furthermore, 60 % of nitrate-to-nitrite transformation ratio was obtained even when COD/N was increased from 4.5 to 5.0 and influent nitrate concentration was reduced to 25 mg/L. This confirmed the stability of PD, which was mainly attributed to a change in the microbial community and a decrease in nitrite reductase (Nir) activity, with microorganisms enriched through the gas–liquid separation operation exhibiting low Nir activity. This study provides a new method for rapid formation of biofilm for wastewater treatment and stable operation of PD.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.