Dileswar Pradhan , Swarna Jaiswal , Brijesh K. Tiwari , Amit K. Jaiswal
{"title":"超声波辅助下用二元酸性和水合三元深共晶溶剂顺序处理大麦秸秆制备纳米纤维素","authors":"Dileswar Pradhan , Swarna Jaiswal , Brijesh K. Tiwari , Amit K. Jaiswal","doi":"10.1016/j.ultsonch.2025.107376","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to valorise barley straw by using a binary acidic deep eutectic solvent (DES) made from choline chloride and lactic acid for biomass pretreatment, and a hydrated ternary DES (HDES) composed of betaine, oxalic acid, and water (BOW HDES) for downstream processing to produce nanocellulose. The ultrasound-assisted DES pretreatment significantly enhanced lignin and hemicellulose solubilisation, achieving an average lignin removal of 70.54 % and hemicellulose solubilisation of 69.58 % under optimal conditions. Purification of US-DES-treated solid residue resulted in a cellulose yield of 39.81 ± 1.47 % with a purity of 91.31 ± 0.93 %, comparable to or exceeding conventional fractionation methods. The yield of lignin-rich material was 9.40 ± 0.89 % with a lignin purity of 83.29 ± 1.57 %. Further, nanocellulose was produced using a sequential process comprising low-viscosity HDES treatment, which improved fibre swelling and solubilisation, followed by high-intensity ultrasound (HIUS) treatment for nanoscale defibrillation. DLS analysis of the optimal nanocellulose sample revealed that 77.8 % of nanoparticles had a diameter below 100 nm, demonstrating a high yield of nanoscale material. XRD analysis confirmed the preservation of the cellulose I crystalline structure throughout processing, ensuring structural integrity. These findings demonstrate an efficient and sustainable biorefinery approach for lignin, cellulose, and nanocellulose extraction from agricultural residues, offering potential for scalable nanocellulose production.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"118 ","pages":"Article 107376"},"PeriodicalIF":9.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound-Assisted sequential processing of barley straw using binary acidic and hydrated ternary deep eutectic solvents for nanocellulose production\",\"authors\":\"Dileswar Pradhan , Swarna Jaiswal , Brijesh K. Tiwari , Amit K. Jaiswal\",\"doi\":\"10.1016/j.ultsonch.2025.107376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aimed to valorise barley straw by using a binary acidic deep eutectic solvent (DES) made from choline chloride and lactic acid for biomass pretreatment, and a hydrated ternary DES (HDES) composed of betaine, oxalic acid, and water (BOW HDES) for downstream processing to produce nanocellulose. The ultrasound-assisted DES pretreatment significantly enhanced lignin and hemicellulose solubilisation, achieving an average lignin removal of 70.54 % and hemicellulose solubilisation of 69.58 % under optimal conditions. Purification of US-DES-treated solid residue resulted in a cellulose yield of 39.81 ± 1.47 % with a purity of 91.31 ± 0.93 %, comparable to or exceeding conventional fractionation methods. The yield of lignin-rich material was 9.40 ± 0.89 % with a lignin purity of 83.29 ± 1.57 %. Further, nanocellulose was produced using a sequential process comprising low-viscosity HDES treatment, which improved fibre swelling and solubilisation, followed by high-intensity ultrasound (HIUS) treatment for nanoscale defibrillation. DLS analysis of the optimal nanocellulose sample revealed that 77.8 % of nanoparticles had a diameter below 100 nm, demonstrating a high yield of nanoscale material. XRD analysis confirmed the preservation of the cellulose I crystalline structure throughout processing, ensuring structural integrity. These findings demonstrate an efficient and sustainable biorefinery approach for lignin, cellulose, and nanocellulose extraction from agricultural residues, offering potential for scalable nanocellulose production.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"118 \",\"pages\":\"Article 107376\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417725001555\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725001555","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Ultrasound-Assisted sequential processing of barley straw using binary acidic and hydrated ternary deep eutectic solvents for nanocellulose production
This study aimed to valorise barley straw by using a binary acidic deep eutectic solvent (DES) made from choline chloride and lactic acid for biomass pretreatment, and a hydrated ternary DES (HDES) composed of betaine, oxalic acid, and water (BOW HDES) for downstream processing to produce nanocellulose. The ultrasound-assisted DES pretreatment significantly enhanced lignin and hemicellulose solubilisation, achieving an average lignin removal of 70.54 % and hemicellulose solubilisation of 69.58 % under optimal conditions. Purification of US-DES-treated solid residue resulted in a cellulose yield of 39.81 ± 1.47 % with a purity of 91.31 ± 0.93 %, comparable to or exceeding conventional fractionation methods. The yield of lignin-rich material was 9.40 ± 0.89 % with a lignin purity of 83.29 ± 1.57 %. Further, nanocellulose was produced using a sequential process comprising low-viscosity HDES treatment, which improved fibre swelling and solubilisation, followed by high-intensity ultrasound (HIUS) treatment for nanoscale defibrillation. DLS analysis of the optimal nanocellulose sample revealed that 77.8 % of nanoparticles had a diameter below 100 nm, demonstrating a high yield of nanoscale material. XRD analysis confirmed the preservation of the cellulose I crystalline structure throughout processing, ensuring structural integrity. These findings demonstrate an efficient and sustainable biorefinery approach for lignin, cellulose, and nanocellulose extraction from agricultural residues, offering potential for scalable nanocellulose production.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.