Qingju Luo, Jizhong Zhu, Di Zhang, Haohao Zhu, Shenglin Li
{"title":"考虑交流潮流和气体动力学的非凸集成电、气系统分布式调度","authors":"Qingju Luo, Jizhong Zhu, Di Zhang, Haohao Zhu, Shenglin Li","doi":"10.1016/j.apenergy.2025.126025","DOIUrl":null,"url":null,"abstract":"<div><div>The coordinated operation of the integrated electricity and gas system (IEGS) produces significant economic and environmental benefits. This paper adopts the non-convex alternating current (AC) power flow and dynamic gas models to characterize the IEGS accurately and uses an improved decomposition-coordination interior point method (IDIPM) for efficient distributed solution of non-convex IEGS dispatch problems. Different from the conventional distributed algorithms, the decomposition-coordination interior point method (DIPM) is mathematically equivalent to the centralized interior point method (CIPM), which guarantees the local convergence of the non-convex distributed optimization. We improved the DIPM by modifying the Newton matrix and using Schur complement and matrix decomposition, making its solution speed faster than the DIPM and CIPM. Furthermore, the IDIPM avoids the numerical problem caused by the DIPM and is therefore more robust. The effectiveness of the IDIPM-based distributed dispatch method is verified by numerical tests on two IEGSs of different scales. In the best case, the efficiency of the IDIPM can be increased to 4 times that of the traditional CIPM.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"392 ","pages":"Article 126025"},"PeriodicalIF":11.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed dispatch of non-convex integrated electricity and gas systems considering AC power flow and gas dynamics\",\"authors\":\"Qingju Luo, Jizhong Zhu, Di Zhang, Haohao Zhu, Shenglin Li\",\"doi\":\"10.1016/j.apenergy.2025.126025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The coordinated operation of the integrated electricity and gas system (IEGS) produces significant economic and environmental benefits. This paper adopts the non-convex alternating current (AC) power flow and dynamic gas models to characterize the IEGS accurately and uses an improved decomposition-coordination interior point method (IDIPM) for efficient distributed solution of non-convex IEGS dispatch problems. Different from the conventional distributed algorithms, the decomposition-coordination interior point method (DIPM) is mathematically equivalent to the centralized interior point method (CIPM), which guarantees the local convergence of the non-convex distributed optimization. We improved the DIPM by modifying the Newton matrix and using Schur complement and matrix decomposition, making its solution speed faster than the DIPM and CIPM. Furthermore, the IDIPM avoids the numerical problem caused by the DIPM and is therefore more robust. The effectiveness of the IDIPM-based distributed dispatch method is verified by numerical tests on two IEGSs of different scales. In the best case, the efficiency of the IDIPM can be increased to 4 times that of the traditional CIPM.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"392 \",\"pages\":\"Article 126025\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030626192500755X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030626192500755X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Distributed dispatch of non-convex integrated electricity and gas systems considering AC power flow and gas dynamics
The coordinated operation of the integrated electricity and gas system (IEGS) produces significant economic and environmental benefits. This paper adopts the non-convex alternating current (AC) power flow and dynamic gas models to characterize the IEGS accurately and uses an improved decomposition-coordination interior point method (IDIPM) for efficient distributed solution of non-convex IEGS dispatch problems. Different from the conventional distributed algorithms, the decomposition-coordination interior point method (DIPM) is mathematically equivalent to the centralized interior point method (CIPM), which guarantees the local convergence of the non-convex distributed optimization. We improved the DIPM by modifying the Newton matrix and using Schur complement and matrix decomposition, making its solution speed faster than the DIPM and CIPM. Furthermore, the IDIPM avoids the numerical problem caused by the DIPM and is therefore more robust. The effectiveness of the IDIPM-based distributed dispatch method is verified by numerical tests on two IEGSs of different scales. In the best case, the efficiency of the IDIPM can be increased to 4 times that of the traditional CIPM.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.