{"title":"基于天然聚合物载体的机械性能:作为壁材的多糖、蛋白质和脂质","authors":"Qinfei Ke, Zhaoyuan Qin, Xingxing Yang, Qingran Meng, Xin Huang, Xingran Kou, Yunchong Zhang","doi":"10.1016/j.carbpol.2025.123699","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional synthetic polymer carriers are restricted due to microplastic pollution, whereas, natural polymer materials have gained widespread use as wall materials for carriers due to their biodegradability, availability, ease of modification, and biocompatibility. The mechanical properties of carriers are particularly crucial for formulation design, storage stability, and practical performance. However, there is currently a lack of reviews on the mechanical properties of natural polymer-based carriers (NPC). This paper delves into the mechanical properties of NPC from five aspects: First, natural polymer wall materials are classified into polysaccharide-based, protein-based, lipid-based, and composite materials, focusing on polysaccharide-dominated systems, and the mechanical properties of NPC constructed from materials of different origins are summarized. Second, various preparation techniques for NPC are introduced, summarizing the mechanical properties of carriers constructed by each method. The paper then examines regulation strategies of the mechanical properties of NPC, including modification techniques, encapsulated substances, morphology, and particle size. Next, methods for characterizing mechanical properties of NPC are introduced. Finally, there is a summary of the progress of NPCs with different mechanical properties in fields, highlighting the challenges faced and proposing future research directions. This review links mechanical optimization to performance, bridging research and applications with eco-friendly NPC strategies.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"362 ","pages":"Article 123699"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical properties of carriers based on natural polymers: Polysaccharides, proteins, and lipids as wall materials\",\"authors\":\"Qinfei Ke, Zhaoyuan Qin, Xingxing Yang, Qingran Meng, Xin Huang, Xingran Kou, Yunchong Zhang\",\"doi\":\"10.1016/j.carbpol.2025.123699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traditional synthetic polymer carriers are restricted due to microplastic pollution, whereas, natural polymer materials have gained widespread use as wall materials for carriers due to their biodegradability, availability, ease of modification, and biocompatibility. The mechanical properties of carriers are particularly crucial for formulation design, storage stability, and practical performance. However, there is currently a lack of reviews on the mechanical properties of natural polymer-based carriers (NPC). This paper delves into the mechanical properties of NPC from five aspects: First, natural polymer wall materials are classified into polysaccharide-based, protein-based, lipid-based, and composite materials, focusing on polysaccharide-dominated systems, and the mechanical properties of NPC constructed from materials of different origins are summarized. Second, various preparation techniques for NPC are introduced, summarizing the mechanical properties of carriers constructed by each method. The paper then examines regulation strategies of the mechanical properties of NPC, including modification techniques, encapsulated substances, morphology, and particle size. Next, methods for characterizing mechanical properties of NPC are introduced. Finally, there is a summary of the progress of NPCs with different mechanical properties in fields, highlighting the challenges faced and proposing future research directions. This review links mechanical optimization to performance, bridging research and applications with eco-friendly NPC strategies.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":\"362 \",\"pages\":\"Article 123699\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861725004813\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725004813","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Mechanical properties of carriers based on natural polymers: Polysaccharides, proteins, and lipids as wall materials
Traditional synthetic polymer carriers are restricted due to microplastic pollution, whereas, natural polymer materials have gained widespread use as wall materials for carriers due to their biodegradability, availability, ease of modification, and biocompatibility. The mechanical properties of carriers are particularly crucial for formulation design, storage stability, and practical performance. However, there is currently a lack of reviews on the mechanical properties of natural polymer-based carriers (NPC). This paper delves into the mechanical properties of NPC from five aspects: First, natural polymer wall materials are classified into polysaccharide-based, protein-based, lipid-based, and composite materials, focusing on polysaccharide-dominated systems, and the mechanical properties of NPC constructed from materials of different origins are summarized. Second, various preparation techniques for NPC are introduced, summarizing the mechanical properties of carriers constructed by each method. The paper then examines regulation strategies of the mechanical properties of NPC, including modification techniques, encapsulated substances, morphology, and particle size. Next, methods for characterizing mechanical properties of NPC are introduced. Finally, there is a summary of the progress of NPCs with different mechanical properties in fields, highlighting the challenges faced and proposing future research directions. This review links mechanical optimization to performance, bridging research and applications with eco-friendly NPC strategies.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.