{"title":"革命性的MXene纳米材料用于氢气的生产和储存:增强催化、储存、机械完整性和生态系统兼容性","authors":"Poongavanam GaneshKumar , Karthik Panchabikesan , S. Divya , Tae Hwan Oh","doi":"10.1016/j.cis.2025.103528","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen holds a pivotal role in achieving net-zero emission targets. Serving as an energy carrier, it complements renewable energy sources in meeting clean energy transition goals and mitigating climate change issues. While many nations recognizes the potential of hydrogen, in the current energy scenario, there is an urgent need for rapid advancements in hydrogen production and storage methods. The advancements in hydrogen production and storage must utilize emission-free methods that are both cost-effective and scalable. Hydrogen as a portable power source, faces criticism due to its low volumetric energy density and the safety requirements associated with its storage. To unlock the full potential of hydrogen in the energy sector, it is imperative to address the challenges related to cost-effective, emission-free generation methods and storage options. In recent years, MXene, a two-dimensional material composed of transition metal carbides, nitrides, and carbonitrides, has garnered significant attention. Its excellent mechanical strength and chemical stability make it a promising material for hydrogen production and storage. Previous reviews have predominantly concentrated on either hydrogen production or storage capabilities of MXene; however, a comprehensive review of its potential in both domains is scarce. Understanding the importance and potential of MXene, the present study review the potential, technical barriers, and solutions for using MXene for both hydrogen production and storage. The challenges associated with MXenes, such as scalability of synthesis, environmental stability, limited hydrogen storage capacity, and catalytic efficiency for hydrogen evolution reactions (HER), are critically examined. Additionally, the review discusses MXene's mechanical and thermal properties, advantages, disadvantages, and environmental risks. Notably, it highlights MXene's application as a catalyst for advancing hydrogen production through gasification, thermochemical processes, and hydrocarbon reforming.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"342 ","pages":"Article 103528"},"PeriodicalIF":15.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing MXene nanomaterials for hydrogen production and storage: Enhancing catalysis, storage, mechanical integrity, and ecosystem compatibility\",\"authors\":\"Poongavanam GaneshKumar , Karthik Panchabikesan , S. Divya , Tae Hwan Oh\",\"doi\":\"10.1016/j.cis.2025.103528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogen holds a pivotal role in achieving net-zero emission targets. Serving as an energy carrier, it complements renewable energy sources in meeting clean energy transition goals and mitigating climate change issues. While many nations recognizes the potential of hydrogen, in the current energy scenario, there is an urgent need for rapid advancements in hydrogen production and storage methods. The advancements in hydrogen production and storage must utilize emission-free methods that are both cost-effective and scalable. Hydrogen as a portable power source, faces criticism due to its low volumetric energy density and the safety requirements associated with its storage. To unlock the full potential of hydrogen in the energy sector, it is imperative to address the challenges related to cost-effective, emission-free generation methods and storage options. In recent years, MXene, a two-dimensional material composed of transition metal carbides, nitrides, and carbonitrides, has garnered significant attention. Its excellent mechanical strength and chemical stability make it a promising material for hydrogen production and storage. Previous reviews have predominantly concentrated on either hydrogen production or storage capabilities of MXene; however, a comprehensive review of its potential in both domains is scarce. Understanding the importance and potential of MXene, the present study review the potential, technical barriers, and solutions for using MXene for both hydrogen production and storage. The challenges associated with MXenes, such as scalability of synthesis, environmental stability, limited hydrogen storage capacity, and catalytic efficiency for hydrogen evolution reactions (HER), are critically examined. Additionally, the review discusses MXene's mechanical and thermal properties, advantages, disadvantages, and environmental risks. Notably, it highlights MXene's application as a catalyst for advancing hydrogen production through gasification, thermochemical processes, and hydrocarbon reforming.</div></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"342 \",\"pages\":\"Article 103528\"},\"PeriodicalIF\":15.9000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001868625001393\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625001393","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Revolutionizing MXene nanomaterials for hydrogen production and storage: Enhancing catalysis, storage, mechanical integrity, and ecosystem compatibility
Hydrogen holds a pivotal role in achieving net-zero emission targets. Serving as an energy carrier, it complements renewable energy sources in meeting clean energy transition goals and mitigating climate change issues. While many nations recognizes the potential of hydrogen, in the current energy scenario, there is an urgent need for rapid advancements in hydrogen production and storage methods. The advancements in hydrogen production and storage must utilize emission-free methods that are both cost-effective and scalable. Hydrogen as a portable power source, faces criticism due to its low volumetric energy density and the safety requirements associated with its storage. To unlock the full potential of hydrogen in the energy sector, it is imperative to address the challenges related to cost-effective, emission-free generation methods and storage options. In recent years, MXene, a two-dimensional material composed of transition metal carbides, nitrides, and carbonitrides, has garnered significant attention. Its excellent mechanical strength and chemical stability make it a promising material for hydrogen production and storage. Previous reviews have predominantly concentrated on either hydrogen production or storage capabilities of MXene; however, a comprehensive review of its potential in both domains is scarce. Understanding the importance and potential of MXene, the present study review the potential, technical barriers, and solutions for using MXene for both hydrogen production and storage. The challenges associated with MXenes, such as scalability of synthesis, environmental stability, limited hydrogen storage capacity, and catalytic efficiency for hydrogen evolution reactions (HER), are critically examined. Additionally, the review discusses MXene's mechanical and thermal properties, advantages, disadvantages, and environmental risks. Notably, it highlights MXene's application as a catalyst for advancing hydrogen production through gasification, thermochemical processes, and hydrocarbon reforming.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.