具有特定合金化的带隙工程BaZrS3硫系钙钛矿太阳能电池的数值优化与对比分析

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Surender Kumar , Devansh Gahlawat , Jaspinder Kaur , Jaya Madan , Rahul Pandey , Rikmantra Basu
{"title":"具有特定合金化的带隙工程BaZrS3硫系钙钛矿太阳能电池的数值优化与对比分析","authors":"Surender Kumar ,&nbsp;Devansh Gahlawat ,&nbsp;Jaspinder Kaur ,&nbsp;Jaya Madan ,&nbsp;Rahul Pandey ,&nbsp;Rikmantra Basu","doi":"10.1016/j.physb.2025.417351","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores bandgap engineering in BaZrS<sub>3</sub>-based photovoltaic devices to enhance their performance and optoelectronic properties. By systematically optimizing the electron transport material (WS<sub>2</sub>) and hole transport layer (Cu<sub>2</sub>O), as well as key absorber parameters and defect characteristics, we minimized recombination losses and improved charge carrier dynamics. Work function alignment of front and back metal contacts was achieved to optimize energy level matching, while temperature variation analysis validated device stability under operating conditions. The study also investigates site-specific alloying strategies, including Ca substitution at the Ba site, Sn substitution at the Zr site, and Se substitution at the S site, to tailor the bandgap and absorption properties. The resulting devices achieved extended cutoff wavelengths of 725 nm, 983 nm, 837 nm, and 918 nm for BaZrS<sub>3</sub>, (Ba,Ca)ZrS<sub>3</sub>, Ba(Zr,Sn)S<sub>3</sub>, and BaZr(S,Se)<sub>3</sub>, respectively. Corresponding efficiencies were 18.13 %, 22.23 %, 21.84 %, and 22.71 %, showcasing the benefits of bandgap engineering in improving both spectral response and power conversion efficiency. This work provides a comprehensive framework for optimizing chalcogenide perovskite devices, offering valuable insights for future research on tandem and multijunction solar cells, and highlights the potential of bandgap engineering in achieving high-efficiency, stable, and sustainable photovoltaic technologies.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"712 ","pages":"Article 417351"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical optimization and comparative analysis of bandgap-engineered BaZrS3 chalcogenide perovskite solar cells with site-specific alloying\",\"authors\":\"Surender Kumar ,&nbsp;Devansh Gahlawat ,&nbsp;Jaspinder Kaur ,&nbsp;Jaya Madan ,&nbsp;Rahul Pandey ,&nbsp;Rikmantra Basu\",\"doi\":\"10.1016/j.physb.2025.417351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores bandgap engineering in BaZrS<sub>3</sub>-based photovoltaic devices to enhance their performance and optoelectronic properties. By systematically optimizing the electron transport material (WS<sub>2</sub>) and hole transport layer (Cu<sub>2</sub>O), as well as key absorber parameters and defect characteristics, we minimized recombination losses and improved charge carrier dynamics. Work function alignment of front and back metal contacts was achieved to optimize energy level matching, while temperature variation analysis validated device stability under operating conditions. The study also investigates site-specific alloying strategies, including Ca substitution at the Ba site, Sn substitution at the Zr site, and Se substitution at the S site, to tailor the bandgap and absorption properties. The resulting devices achieved extended cutoff wavelengths of 725 nm, 983 nm, 837 nm, and 918 nm for BaZrS<sub>3</sub>, (Ba,Ca)ZrS<sub>3</sub>, Ba(Zr,Sn)S<sub>3</sub>, and BaZr(S,Se)<sub>3</sub>, respectively. Corresponding efficiencies were 18.13 %, 22.23 %, 21.84 %, and 22.71 %, showcasing the benefits of bandgap engineering in improving both spectral response and power conversion efficiency. This work provides a comprehensive framework for optimizing chalcogenide perovskite devices, offering valuable insights for future research on tandem and multijunction solar cells, and highlights the potential of bandgap engineering in achieving high-efficiency, stable, and sustainable photovoltaic technologies.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"712 \",\"pages\":\"Article 417351\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625004685\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625004685","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了基于bazrs3的光电器件的带隙工程,以提高其性能和光电性能。通过系统优化电子输运材料(WS2)和空穴输运层(Cu2O),以及关键的吸收剂参数和缺陷特征,我们最大限度地减少了复合损失,改善了载流子动力学。实现了前后金属触点的功函数对准,优化了能级匹配,温度变化分析验证了器件在工作条件下的稳定性。该研究还研究了特定位点的合金化策略,包括Ba位点的Ca取代,Zr位点的Sn取代和S位点的Se取代,以定制带隙和吸收性能。该器件对BaZrS3、(Ba,Ca)ZrS3、Ba(Zr,Sn)S3和BaZr(S,Se)3的截止波长分别达到725 nm、983 nm、837 nm和918 nm。相应的效率分别为18.13%、22.23%、21.84%和22.71%,显示了带隙工程在提高光谱响应和功率转换效率方面的优势。这项工作为优化硫系钙钛矿器件提供了一个全面的框架,为未来串联和多结太阳能电池的研究提供了有价值的见解,并突出了带隙工程在实现高效、稳定和可持续光伏技术方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical optimization and comparative analysis of bandgap-engineered BaZrS3 chalcogenide perovskite solar cells with site-specific alloying
This study explores bandgap engineering in BaZrS3-based photovoltaic devices to enhance their performance and optoelectronic properties. By systematically optimizing the electron transport material (WS2) and hole transport layer (Cu2O), as well as key absorber parameters and defect characteristics, we minimized recombination losses and improved charge carrier dynamics. Work function alignment of front and back metal contacts was achieved to optimize energy level matching, while temperature variation analysis validated device stability under operating conditions. The study also investigates site-specific alloying strategies, including Ca substitution at the Ba site, Sn substitution at the Zr site, and Se substitution at the S site, to tailor the bandgap and absorption properties. The resulting devices achieved extended cutoff wavelengths of 725 nm, 983 nm, 837 nm, and 918 nm for BaZrS3, (Ba,Ca)ZrS3, Ba(Zr,Sn)S3, and BaZr(S,Se)3, respectively. Corresponding efficiencies were 18.13 %, 22.23 %, 21.84 %, and 22.71 %, showcasing the benefits of bandgap engineering in improving both spectral response and power conversion efficiency. This work provides a comprehensive framework for optimizing chalcogenide perovskite devices, offering valuable insights for future research on tandem and multijunction solar cells, and highlights the potential of bandgap engineering in achieving high-efficiency, stable, and sustainable photovoltaic technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信