Md. Shamshuzzoha , Tazkia Tasnim Bahar Audry , Md. Jahangir Alam , Zaheed Ahmed Bhuiyan , Md Motaharul Islam , Mohammad Mehedi Hassan
{"title":"季节性情感障碍检测的新框架:使用多模态社交媒体数据和SMOTE的综合机器学习分析","authors":"Md. Shamshuzzoha , Tazkia Tasnim Bahar Audry , Md. Jahangir Alam , Zaheed Ahmed Bhuiyan , Md Motaharul Islam , Mohammad Mehedi Hassan","doi":"10.1016/j.actpsy.2025.105005","DOIUrl":null,"url":null,"abstract":"<div><div>Seasonal Affective Disorder (SAD) is a mood disorder characterized by recurring depressive episodes during specific seasons, particularly in Fall and Winter. With the rise of social media as a platform for self-expression, user-generated content offers valuable insights into mental health trends, presenting an opportunity for data-driven SAD detection. However, existing research faces challenges such as limited multimodal datasets, class imbalance, and the need for real-time predictive models. This study addresses these gaps by curating a unique social media dataset that captures seasonal patterns and employing advanced machine learning techniques for accurate SAD detection. We apply the Synthetic Minority Over-sampling Technique (SMOTE) in two distinct ways—on the training dataset post-splitting and the entire dataset—to assess its impact on model generalization. Our findings highlight Random Forest, LGBM, and XGBoost as the top-performing models, with K-Nearest Neighbors (KNN) achieving the highest accuracy of 97.87 % in the training dataset. Additionally, we optimize computational efficiency to ensure real-time scalability for large-scale social media data processing. This research advances SAD detection by integrating robust dataset curation, class imbalance mitigation, and machine learning optimization, paving the way for more effective mental health monitoring through social media analytics.</div></div>","PeriodicalId":7141,"journal":{"name":"Acta Psychologica","volume":"256 ","pages":"Article 105005"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel framework for seasonal affective disorder detection: Comprehensive machine learning analysis using multimodal social media data and SMOTE\",\"authors\":\"Md. Shamshuzzoha , Tazkia Tasnim Bahar Audry , Md. Jahangir Alam , Zaheed Ahmed Bhuiyan , Md Motaharul Islam , Mohammad Mehedi Hassan\",\"doi\":\"10.1016/j.actpsy.2025.105005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Seasonal Affective Disorder (SAD) is a mood disorder characterized by recurring depressive episodes during specific seasons, particularly in Fall and Winter. With the rise of social media as a platform for self-expression, user-generated content offers valuable insights into mental health trends, presenting an opportunity for data-driven SAD detection. However, existing research faces challenges such as limited multimodal datasets, class imbalance, and the need for real-time predictive models. This study addresses these gaps by curating a unique social media dataset that captures seasonal patterns and employing advanced machine learning techniques for accurate SAD detection. We apply the Synthetic Minority Over-sampling Technique (SMOTE) in two distinct ways—on the training dataset post-splitting and the entire dataset—to assess its impact on model generalization. Our findings highlight Random Forest, LGBM, and XGBoost as the top-performing models, with K-Nearest Neighbors (KNN) achieving the highest accuracy of 97.87 % in the training dataset. Additionally, we optimize computational efficiency to ensure real-time scalability for large-scale social media data processing. This research advances SAD detection by integrating robust dataset curation, class imbalance mitigation, and machine learning optimization, paving the way for more effective mental health monitoring through social media analytics.</div></div>\",\"PeriodicalId\":7141,\"journal\":{\"name\":\"Acta Psychologica\",\"volume\":\"256 \",\"pages\":\"Article 105005\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Psychologica\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000169182500318X\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Psychologica","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000169182500318X","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
A novel framework for seasonal affective disorder detection: Comprehensive machine learning analysis using multimodal social media data and SMOTE
Seasonal Affective Disorder (SAD) is a mood disorder characterized by recurring depressive episodes during specific seasons, particularly in Fall and Winter. With the rise of social media as a platform for self-expression, user-generated content offers valuable insights into mental health trends, presenting an opportunity for data-driven SAD detection. However, existing research faces challenges such as limited multimodal datasets, class imbalance, and the need for real-time predictive models. This study addresses these gaps by curating a unique social media dataset that captures seasonal patterns and employing advanced machine learning techniques for accurate SAD detection. We apply the Synthetic Minority Over-sampling Technique (SMOTE) in two distinct ways—on the training dataset post-splitting and the entire dataset—to assess its impact on model generalization. Our findings highlight Random Forest, LGBM, and XGBoost as the top-performing models, with K-Nearest Neighbors (KNN) achieving the highest accuracy of 97.87 % in the training dataset. Additionally, we optimize computational efficiency to ensure real-time scalability for large-scale social media data processing. This research advances SAD detection by integrating robust dataset curation, class imbalance mitigation, and machine learning optimization, paving the way for more effective mental health monitoring through social media analytics.
期刊介绍:
Acta Psychologica publishes original articles and extended reviews on selected books in any area of experimental psychology. The focus of the Journal is on empirical studies and evaluative review articles that increase the theoretical understanding of human capabilities.