Naser Hosseini , Fabrizio Valenza , Zdeněk Chlup , Sofia Gambaro , Carla Malinverni , Valentina Casalegno , Alexandra Kovalčíková , Monika Tatarková , Ivo Dlouhý , Peter Tatarko
{"title":"AgCuTi填料润湿和钎焊(HfTaZrNbTi)B2和(HfTaZrNbTi)C高熵陶瓷","authors":"Naser Hosseini , Fabrizio Valenza , Zdeněk Chlup , Sofia Gambaro , Carla Malinverni , Valentina Casalegno , Alexandra Kovalčíková , Monika Tatarková , Ivo Dlouhý , Peter Tatarko","doi":"10.1016/j.oceram.2025.100792","DOIUrl":null,"url":null,"abstract":"<div><div>The wetting behaviour of (HfTaZrNbTi)B₂ high entropy boride (HEB) and (HfTaZrNbTi)C high-entropy carbide (HEC) with molten Cu and AgCuTi alloy was investigated via the sessile drop method under an Ar/H<sub>2</sub> atmosphere. Pure Cu exhibited non-reactive wetting with contact angles ∼ 120° on HEB and ∼ 126° on HEC. In contrast, AgCuTi alloy showed strong reactive wetting (contact angle ≤ 17°), primarily driven by reactive Ti. The reaction layer was notably thicker for the HEC/AgCuTi system. Due to the better wetting behaviour and high-temperature interactions with the ceramic substrates, AgCuTi alloy was employed as a filler to braze HEB and HEC using pressure-less Field Assisted Sintering Technique (FAST). The resulting joints demonstrated high apparent shear strength of 176 ± 39 MPa for HEC and 116 ± 38 MPa for HEB, exceeding the strength of the base materials in both cases.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"22 ","pages":"Article 100792"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wetting and brazing of (HfTaZrNbTi)B2 and (HfTaZrNbTi)C High-Entropy Ceramics by AgCuTi filler\",\"authors\":\"Naser Hosseini , Fabrizio Valenza , Zdeněk Chlup , Sofia Gambaro , Carla Malinverni , Valentina Casalegno , Alexandra Kovalčíková , Monika Tatarková , Ivo Dlouhý , Peter Tatarko\",\"doi\":\"10.1016/j.oceram.2025.100792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The wetting behaviour of (HfTaZrNbTi)B₂ high entropy boride (HEB) and (HfTaZrNbTi)C high-entropy carbide (HEC) with molten Cu and AgCuTi alloy was investigated via the sessile drop method under an Ar/H<sub>2</sub> atmosphere. Pure Cu exhibited non-reactive wetting with contact angles ∼ 120° on HEB and ∼ 126° on HEC. In contrast, AgCuTi alloy showed strong reactive wetting (contact angle ≤ 17°), primarily driven by reactive Ti. The reaction layer was notably thicker for the HEC/AgCuTi system. Due to the better wetting behaviour and high-temperature interactions with the ceramic substrates, AgCuTi alloy was employed as a filler to braze HEB and HEC using pressure-less Field Assisted Sintering Technique (FAST). The resulting joints demonstrated high apparent shear strength of 176 ± 39 MPa for HEC and 116 ± 38 MPa for HEB, exceeding the strength of the base materials in both cases.</div></div>\",\"PeriodicalId\":34140,\"journal\":{\"name\":\"Open Ceramics\",\"volume\":\"22 \",\"pages\":\"Article 100792\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666539525000598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539525000598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Wetting and brazing of (HfTaZrNbTi)B2 and (HfTaZrNbTi)C High-Entropy Ceramics by AgCuTi filler
The wetting behaviour of (HfTaZrNbTi)B₂ high entropy boride (HEB) and (HfTaZrNbTi)C high-entropy carbide (HEC) with molten Cu and AgCuTi alloy was investigated via the sessile drop method under an Ar/H2 atmosphere. Pure Cu exhibited non-reactive wetting with contact angles ∼ 120° on HEB and ∼ 126° on HEC. In contrast, AgCuTi alloy showed strong reactive wetting (contact angle ≤ 17°), primarily driven by reactive Ti. The reaction layer was notably thicker for the HEC/AgCuTi system. Due to the better wetting behaviour and high-temperature interactions with the ceramic substrates, AgCuTi alloy was employed as a filler to braze HEB and HEC using pressure-less Field Assisted Sintering Technique (FAST). The resulting joints demonstrated high apparent shear strength of 176 ± 39 MPa for HEC and 116 ± 38 MPa for HEB, exceeding the strength of the base materials in both cases.