Rabab Ahmed Rasheed , A.S. Sadek , R.T. Khattab , Diana Z. Saad , Noha O. Shawky , Heba A. Abdelfattah
{"title":"橙皮素能否通过其抗氧化、抗凋亡和抗炎特性改善阿霉素诱导的大鼠肾毒性?","authors":"Rabab Ahmed Rasheed , A.S. Sadek , R.T. Khattab , Diana Z. Saad , Noha O. Shawky , Heba A. Abdelfattah","doi":"10.1016/j.tice.2025.102951","DOIUrl":null,"url":null,"abstract":"<div><div>Doxorubicin (DOX), from the anthracycline family, is a widely utilized chemotherapy for various malignancies; however, its utility is limited due to the serious adverse reactions, particularly on the kidneys, primarily related to oxidative stress, inflammation, and apoptosis. Hesperetin (HES), the citrus fruit derivative, is a naturally occurring flavonoid. Previous studies underscored HES’s protective efficacy against renal damage in several disorders in rodents through its proven antioxidant, antiapoptotic, and anti-inflammatory properties. This work explored the protecting role of HES against the nephrotoxic effects of DOX and the possible underlying mechanisms. Nephrotoxicity was induced in rats via administering six equal doses of DOX (3 mg/kg/week, i.p) for six consecutive weeks. The treated group received HES (50 mg/kg/day, p.o.) simultaneously with DOX. Rats’ body and kidney weights, serum creatinine, blood urea nitrogen (BUN), and albumin were estimated. Kidney tissue was treated to assess redox status, histopathological, and immunohistochemical alterations. Compared to the controls, coadministration of HES with DOX significantly reduced the serum BUN and creatinine, elevated the serum albumin, amended the glomerular distortion and tubular epithelial degeneration, decreased collagen deposition, vascular congestion, and inflammatory cells in addition to the significant attenuation of inflammatory cytokines and proapoptotic markers. Our study is the first of its kind to underscore the HES’s antioxidant, antiapoptotic, and anti-inflammatory activities in an experimental model of DOX-induced nephrotoxicity with emphasis on TNF-α, IL-1β, and IL-6 signaling pathway, rendering it as an effective therapeutic supplement that could alleviate the nephrotoxic effect of DOX.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"96 ","pages":"Article 102951"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Could hesperetin ameliorate doxorubicin-induced nephrotoxicity in rats via its antioxidant, antiapoptotic, and anti-inflammatory properties?\",\"authors\":\"Rabab Ahmed Rasheed , A.S. Sadek , R.T. Khattab , Diana Z. Saad , Noha O. Shawky , Heba A. Abdelfattah\",\"doi\":\"10.1016/j.tice.2025.102951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Doxorubicin (DOX), from the anthracycline family, is a widely utilized chemotherapy for various malignancies; however, its utility is limited due to the serious adverse reactions, particularly on the kidneys, primarily related to oxidative stress, inflammation, and apoptosis. Hesperetin (HES), the citrus fruit derivative, is a naturally occurring flavonoid. Previous studies underscored HES’s protective efficacy against renal damage in several disorders in rodents through its proven antioxidant, antiapoptotic, and anti-inflammatory properties. This work explored the protecting role of HES against the nephrotoxic effects of DOX and the possible underlying mechanisms. Nephrotoxicity was induced in rats via administering six equal doses of DOX (3 mg/kg/week, i.p) for six consecutive weeks. The treated group received HES (50 mg/kg/day, p.o.) simultaneously with DOX. Rats’ body and kidney weights, serum creatinine, blood urea nitrogen (BUN), and albumin were estimated. Kidney tissue was treated to assess redox status, histopathological, and immunohistochemical alterations. Compared to the controls, coadministration of HES with DOX significantly reduced the serum BUN and creatinine, elevated the serum albumin, amended the glomerular distortion and tubular epithelial degeneration, decreased collagen deposition, vascular congestion, and inflammatory cells in addition to the significant attenuation of inflammatory cytokines and proapoptotic markers. Our study is the first of its kind to underscore the HES’s antioxidant, antiapoptotic, and anti-inflammatory activities in an experimental model of DOX-induced nephrotoxicity with emphasis on TNF-α, IL-1β, and IL-6 signaling pathway, rendering it as an effective therapeutic supplement that could alleviate the nephrotoxic effect of DOX.</div></div>\",\"PeriodicalId\":23201,\"journal\":{\"name\":\"Tissue & cell\",\"volume\":\"96 \",\"pages\":\"Article 102951\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue & cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040816625002319\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816625002319","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Could hesperetin ameliorate doxorubicin-induced nephrotoxicity in rats via its antioxidant, antiapoptotic, and anti-inflammatory properties?
Doxorubicin (DOX), from the anthracycline family, is a widely utilized chemotherapy for various malignancies; however, its utility is limited due to the serious adverse reactions, particularly on the kidneys, primarily related to oxidative stress, inflammation, and apoptosis. Hesperetin (HES), the citrus fruit derivative, is a naturally occurring flavonoid. Previous studies underscored HES’s protective efficacy against renal damage in several disorders in rodents through its proven antioxidant, antiapoptotic, and anti-inflammatory properties. This work explored the protecting role of HES against the nephrotoxic effects of DOX and the possible underlying mechanisms. Nephrotoxicity was induced in rats via administering six equal doses of DOX (3 mg/kg/week, i.p) for six consecutive weeks. The treated group received HES (50 mg/kg/day, p.o.) simultaneously with DOX. Rats’ body and kidney weights, serum creatinine, blood urea nitrogen (BUN), and albumin were estimated. Kidney tissue was treated to assess redox status, histopathological, and immunohistochemical alterations. Compared to the controls, coadministration of HES with DOX significantly reduced the serum BUN and creatinine, elevated the serum albumin, amended the glomerular distortion and tubular epithelial degeneration, decreased collagen deposition, vascular congestion, and inflammatory cells in addition to the significant attenuation of inflammatory cytokines and proapoptotic markers. Our study is the first of its kind to underscore the HES’s antioxidant, antiapoptotic, and anti-inflammatory activities in an experimental model of DOX-induced nephrotoxicity with emphasis on TNF-α, IL-1β, and IL-6 signaling pathway, rendering it as an effective therapeutic supplement that could alleviate the nephrotoxic effect of DOX.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.