Nur Umisyuhada Mohd Nor , Khaireddin Boukayouht , Samir El Hankari , Nor Aishah Saidina Amin
{"title":"光催化CO2转化中的变革性方法:人工智能和计算化学的影响","authors":"Nur Umisyuhada Mohd Nor , Khaireddin Boukayouht , Samir El Hankari , Nor Aishah Saidina Amin","doi":"10.1016/j.cogsc.2025.101027","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic CO<sub>2</sub> conversion is a promising method for reducing atmospheric CO<sub>2</sub> using solar energy. This review highlights transformative approaches in this field, focusing on the impact of artificial intelligence and computational chemistry. The fundamentals of photocatalytic CO<sub>2</sub> conversion, the role of AI in optimizing processes, and the contributions of Density Functional Theory (DFT) to understanding mechanisms and improving catalyst design are discussed. By integrating AI with DFT, synergistic methods that enhance catalyst development and process efficiency are explored. The review also addresses current challenges and future research directions, emphasizing the potential of artificial intelligent and computational chemistry to advance sustainable CO<sub>2</sub> conversion technologies.</div></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"53 ","pages":"Article 101027"},"PeriodicalIF":9.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformative approaches in photocatalytic CO2 conversion: The impact of AI and computational chemistry\",\"authors\":\"Nur Umisyuhada Mohd Nor , Khaireddin Boukayouht , Samir El Hankari , Nor Aishah Saidina Amin\",\"doi\":\"10.1016/j.cogsc.2025.101027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photocatalytic CO<sub>2</sub> conversion is a promising method for reducing atmospheric CO<sub>2</sub> using solar energy. This review highlights transformative approaches in this field, focusing on the impact of artificial intelligence and computational chemistry. The fundamentals of photocatalytic CO<sub>2</sub> conversion, the role of AI in optimizing processes, and the contributions of Density Functional Theory (DFT) to understanding mechanisms and improving catalyst design are discussed. By integrating AI with DFT, synergistic methods that enhance catalyst development and process efficiency are explored. The review also addresses current challenges and future research directions, emphasizing the potential of artificial intelligent and computational chemistry to advance sustainable CO<sub>2</sub> conversion technologies.</div></div>\",\"PeriodicalId\":54228,\"journal\":{\"name\":\"Current Opinion in Green and Sustainable Chemistry\",\"volume\":\"53 \",\"pages\":\"Article 101027\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Green and Sustainable Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452223625000318\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452223625000318","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Transformative approaches in photocatalytic CO2 conversion: The impact of AI and computational chemistry
Photocatalytic CO2 conversion is a promising method for reducing atmospheric CO2 using solar energy. This review highlights transformative approaches in this field, focusing on the impact of artificial intelligence and computational chemistry. The fundamentals of photocatalytic CO2 conversion, the role of AI in optimizing processes, and the contributions of Density Functional Theory (DFT) to understanding mechanisms and improving catalyst design are discussed. By integrating AI with DFT, synergistic methods that enhance catalyst development and process efficiency are explored. The review also addresses current challenges and future research directions, emphasizing the potential of artificial intelligent and computational chemistry to advance sustainable CO2 conversion technologies.
期刊介绍:
The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.