Yuqing Li , Ningning Liao , Caibin Wu , Zepeng Lin , Cong Luo , Haowen Wu , Jiexin Zhou , Jinbo Huang
{"title":"间歇式球磨机中不同粒度陶瓷球对石英研磨动力学的影响","authors":"Yuqing Li , Ningning Liao , Caibin Wu , Zepeng Lin , Cong Luo , Haowen Wu , Jiexin Zhou , Jinbo Huang","doi":"10.1016/j.partic.2025.04.011","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the effect of ceramic ball diameter on grinding performance of quartz crystal with different particle sizes in wet ball mill, and established a population-equilibrium model in quartz grinding process. The results show that the first-order crushing kinetic model can accurately describe the grinding behavior of quartz. The crushing rate of quartz mineral decreases with the decrease of the size of ceramic ball, but the crushing rate of small-size ceramic ball is less affected by the quartz feed size. On the other hand, quartz grinding products have obvious zero-order fine grain output characteristics in a short time, and with the decrease of ceramic ball diameter, the maximum grinding capacity of minerals increases first and then decreases. The grain size distribution of quartz grinding results can be calculated accurately by using the final quartz crushing parameters. The particle size distribution data simulated by the population balance model is in good agreement with the experimental data of quartz grinding process.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"102 ","pages":"Pages 141-151"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of different size ceramic balls on quartz grinding dynamics in batch ball mill\",\"authors\":\"Yuqing Li , Ningning Liao , Caibin Wu , Zepeng Lin , Cong Luo , Haowen Wu , Jiexin Zhou , Jinbo Huang\",\"doi\":\"10.1016/j.partic.2025.04.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigated the effect of ceramic ball diameter on grinding performance of quartz crystal with different particle sizes in wet ball mill, and established a population-equilibrium model in quartz grinding process. The results show that the first-order crushing kinetic model can accurately describe the grinding behavior of quartz. The crushing rate of quartz mineral decreases with the decrease of the size of ceramic ball, but the crushing rate of small-size ceramic ball is less affected by the quartz feed size. On the other hand, quartz grinding products have obvious zero-order fine grain output characteristics in a short time, and with the decrease of ceramic ball diameter, the maximum grinding capacity of minerals increases first and then decreases. The grain size distribution of quartz grinding results can be calculated accurately by using the final quartz crushing parameters. The particle size distribution data simulated by the population balance model is in good agreement with the experimental data of quartz grinding process.</div></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"102 \",\"pages\":\"Pages 141-151\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200125001105\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200125001105","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effect of different size ceramic balls on quartz grinding dynamics in batch ball mill
This study investigated the effect of ceramic ball diameter on grinding performance of quartz crystal with different particle sizes in wet ball mill, and established a population-equilibrium model in quartz grinding process. The results show that the first-order crushing kinetic model can accurately describe the grinding behavior of quartz. The crushing rate of quartz mineral decreases with the decrease of the size of ceramic ball, but the crushing rate of small-size ceramic ball is less affected by the quartz feed size. On the other hand, quartz grinding products have obvious zero-order fine grain output characteristics in a short time, and with the decrease of ceramic ball diameter, the maximum grinding capacity of minerals increases first and then decreases. The grain size distribution of quartz grinding results can be calculated accurately by using the final quartz crushing parameters. The particle size distribution data simulated by the population balance model is in good agreement with the experimental data of quartz grinding process.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.