关系型结构的代数普遍范畴

IF 0.7 2区 数学 Q2 MATHEMATICS
Ioannis Eleftheriadis
{"title":"关系型结构的代数普遍范畴","authors":"Ioannis Eleftheriadis","doi":"10.1016/j.jpaa.2025.107984","DOIUrl":null,"url":null,"abstract":"<div><div>We study the problem of representability of categories of algebras in categories of relational structures. This is a general framework for a long line of research pertaining to the realisation of algebraic structures in graphs. Drawing inspiration from a combinatorial property of classes of finite graphs known as nowhere density that originates from the work of Nešetřil and Ossona de Mendez, we establish a partial characterisation of those relational categories which are algebraically universal, meaning that they fully embed all categories of algebras. More precisely, we show that the any algebraically universal category of relational structures must necessarily contain subdivided complete graphs of any infinite size. Conversely, we establish that any relational category closed under removal of relations and having this property may be oriented to obtain an algebraically universal category. For the proof of the above, we develop a categorical framework for relational gadget constructions. This generalises existing work on algebraic representability in categories of finite graphs to categories of relational structures of unbounded size.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107984"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraically universal categories of relational structures\",\"authors\":\"Ioannis Eleftheriadis\",\"doi\":\"10.1016/j.jpaa.2025.107984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the problem of representability of categories of algebras in categories of relational structures. This is a general framework for a long line of research pertaining to the realisation of algebraic structures in graphs. Drawing inspiration from a combinatorial property of classes of finite graphs known as nowhere density that originates from the work of Nešetřil and Ossona de Mendez, we establish a partial characterisation of those relational categories which are algebraically universal, meaning that they fully embed all categories of algebras. More precisely, we show that the any algebraically universal category of relational structures must necessarily contain subdivided complete graphs of any infinite size. Conversely, we establish that any relational category closed under removal of relations and having this property may be oriented to obtain an algebraically universal category. For the proof of the above, we develop a categorical framework for relational gadget constructions. This generalises existing work on algebraic representability in categories of finite graphs to categories of relational structures of unbounded size.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 6\",\"pages\":\"Article 107984\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925001239\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001239","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究关系结构范畴中代数范畴的可表征性问题。这是关于在图中实现代数结构的一长串研究的一般框架。从Nešetřil和Ossona de Mendez的工作中得到的被称为无处密度的有限图类的组合性质中获得灵感,我们建立了那些代数上普遍的关系范畴的部分特征,这意味着它们完全嵌入代数的所有类别。更确切地说,我们证明了关系结构的任何代数普遍范畴必须包含任何无限大小的细分完全图。反过来,我们证明了任何关系范畴在关系消去下关闭并具有这一性质,都可以定向得到代数上的全称范畴。为了证明这一点,我们开发了一个关系小工具构造的范畴框架。这将现有的关于有限图范畴的代数可表示性的工作推广到无界大小的关系结构范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraically universal categories of relational structures
We study the problem of representability of categories of algebras in categories of relational structures. This is a general framework for a long line of research pertaining to the realisation of algebraic structures in graphs. Drawing inspiration from a combinatorial property of classes of finite graphs known as nowhere density that originates from the work of Nešetřil and Ossona de Mendez, we establish a partial characterisation of those relational categories which are algebraically universal, meaning that they fully embed all categories of algebras. More precisely, we show that the any algebraically universal category of relational structures must necessarily contain subdivided complete graphs of any infinite size. Conversely, we establish that any relational category closed under removal of relations and having this property may be oriented to obtain an algebraically universal category. For the proof of the above, we develop a categorical framework for relational gadget constructions. This generalises existing work on algebraic representability in categories of finite graphs to categories of relational structures of unbounded size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信