具有导电界面的芳纶纳米纤维/液态金属/Gd2O3柔性薄膜,用于电磁干扰屏蔽和焦耳加热

IF 6.5 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Xinyi Zhu , Haoyun Wang , Yang He , Xia Feng , Yiping Zhao , Li Chen
{"title":"具有导电界面的芳纶纳米纤维/液态金属/Gd2O3柔性薄膜,用于电磁干扰屏蔽和焦耳加热","authors":"Xinyi Zhu ,&nbsp;Haoyun Wang ,&nbsp;Yang He ,&nbsp;Xia Feng ,&nbsp;Yiping Zhao ,&nbsp;Li Chen","doi":"10.1016/j.coco.2025.102430","DOIUrl":null,"url":null,"abstract":"<div><div>The increasingly complex electromagnetic environments necessitate advanced electromagnetic interference (EMI) shielding materials with flexibility, high shielding efficiency, lightweight, and multifunctionality. Here, we present a mechanically robust and flexible aramid nanofiber/liquid metal/Gd<sub>2</sub>O<sub>3</sub> (ALG) composite film engineered via vacuum-assisted filtration and mechanical pressing. By integrating liquid metal (LM) with high conductivity and rare-earth Gd<sub>2</sub>O<sub>3</sub> nanoparticles to induce magneto-dielectric synergy, the optimized ALG film achieves exceptional electrical conductivity (1075.0 S/cm) and EMI shielding effectiveness (SE) of 74.3 dB at a minimal thickness of 68 μm, alongside a specific SE (SSE) of 1092.6 dB mm<sup>−1</sup>. The unique combination of the conductive pathways of LM, the magnetic loss of Gd<sub>2</sub>O<sub>3</sub>, and the mechanical reinforcement of aramid nanofibers enables balanced dielectric-magnetic energy dissipation while maintaining ultra-low density and flexibility. To unravel the underlying shielding mechanism, frequency-domain simulations were performed using the High-Frequency Structure Simulator (HFSS), providing quantitative insights into the electromagnetic wave dissipation pathways within the composite. Furthermore, the film exhibits rapid Joule heating, highlighting its dual functionality for EMI shielding and thermal management. This work advances the development of multifunctional shielding materials for next-generation wearable electronics, aerospace systems, and defense technologies.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"57 ","pages":"Article 102430"},"PeriodicalIF":6.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aramid nanofiber/liquid metal/Gd2O3 flexible films with magnetic-conductive interfaces for electromagnetic interference shielding and Joule heating\",\"authors\":\"Xinyi Zhu ,&nbsp;Haoyun Wang ,&nbsp;Yang He ,&nbsp;Xia Feng ,&nbsp;Yiping Zhao ,&nbsp;Li Chen\",\"doi\":\"10.1016/j.coco.2025.102430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasingly complex electromagnetic environments necessitate advanced electromagnetic interference (EMI) shielding materials with flexibility, high shielding efficiency, lightweight, and multifunctionality. Here, we present a mechanically robust and flexible aramid nanofiber/liquid metal/Gd<sub>2</sub>O<sub>3</sub> (ALG) composite film engineered via vacuum-assisted filtration and mechanical pressing. By integrating liquid metal (LM) with high conductivity and rare-earth Gd<sub>2</sub>O<sub>3</sub> nanoparticles to induce magneto-dielectric synergy, the optimized ALG film achieves exceptional electrical conductivity (1075.0 S/cm) and EMI shielding effectiveness (SE) of 74.3 dB at a minimal thickness of 68 μm, alongside a specific SE (SSE) of 1092.6 dB mm<sup>−1</sup>. The unique combination of the conductive pathways of LM, the magnetic loss of Gd<sub>2</sub>O<sub>3</sub>, and the mechanical reinforcement of aramid nanofibers enables balanced dielectric-magnetic energy dissipation while maintaining ultra-low density and flexibility. To unravel the underlying shielding mechanism, frequency-domain simulations were performed using the High-Frequency Structure Simulator (HFSS), providing quantitative insights into the electromagnetic wave dissipation pathways within the composite. Furthermore, the film exhibits rapid Joule heating, highlighting its dual functionality for EMI shielding and thermal management. This work advances the development of multifunctional shielding materials for next-generation wearable electronics, aerospace systems, and defense technologies.</div></div>\",\"PeriodicalId\":10533,\"journal\":{\"name\":\"Composites Communications\",\"volume\":\"57 \",\"pages\":\"Article 102430\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452213925001834\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213925001834","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

日益复杂的电磁环境要求先进的电磁干扰(EMI)屏蔽材料具有灵活性、高屏蔽效率、轻量化和多功能性。在这里,我们提出了一种机械坚固和灵活的芳纶纳米纤维/液态金属/Gd2O3 (ALG)复合薄膜,通过真空辅助过滤和机械压制设计。通过集成具有高导电性的液态金属(LM)和稀土Gd2O3纳米颗粒来诱导磁介电协同作用,优化后的ALG膜在最小厚度为68 μm时具有卓越的导电性(1075.0 S/cm)和74.3 dB的EMI屏蔽效能(SE),以及1092.6 dB mm−1的比SE (SSE)。LM的导电路径、Gd2O3的磁损耗和芳纶纳米纤维的机械增强的独特组合,使其在保持超低密度和柔韧性的同时,实现了介电-磁能量耗散的平衡。为了揭示潜在的屏蔽机制,使用高频结构模拟器(HFSS)进行了频域模拟,为复合材料内的电磁波耗散路径提供了定量的见解。此外,薄膜表现出快速焦耳加热,突出其电磁干扰屏蔽和热管理的双重功能。这项工作推动了下一代可穿戴电子、航空航天系统和国防技术的多功能屏蔽材料的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aramid nanofiber/liquid metal/Gd2O3 flexible films with magnetic-conductive interfaces for electromagnetic interference shielding and Joule heating
The increasingly complex electromagnetic environments necessitate advanced electromagnetic interference (EMI) shielding materials with flexibility, high shielding efficiency, lightweight, and multifunctionality. Here, we present a mechanically robust and flexible aramid nanofiber/liquid metal/Gd2O3 (ALG) composite film engineered via vacuum-assisted filtration and mechanical pressing. By integrating liquid metal (LM) with high conductivity and rare-earth Gd2O3 nanoparticles to induce magneto-dielectric synergy, the optimized ALG film achieves exceptional electrical conductivity (1075.0 S/cm) and EMI shielding effectiveness (SE) of 74.3 dB at a minimal thickness of 68 μm, alongside a specific SE (SSE) of 1092.6 dB mm−1. The unique combination of the conductive pathways of LM, the magnetic loss of Gd2O3, and the mechanical reinforcement of aramid nanofibers enables balanced dielectric-magnetic energy dissipation while maintaining ultra-low density and flexibility. To unravel the underlying shielding mechanism, frequency-domain simulations were performed using the High-Frequency Structure Simulator (HFSS), providing quantitative insights into the electromagnetic wave dissipation pathways within the composite. Furthermore, the film exhibits rapid Joule heating, highlighting its dual functionality for EMI shielding and thermal management. This work advances the development of multifunctional shielding materials for next-generation wearable electronics, aerospace systems, and defense technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信