城市污水处理好氧颗粒污泥的可持续碳管理

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Therese Areskoug , Johanna Arita Mendoza , Oskar Modin , Dag Lorick , Susanne Tumlin , Britt-Marie Wilén
{"title":"城市污水处理好氧颗粒污泥的可持续碳管理","authors":"Therese Areskoug ,&nbsp;Johanna Arita Mendoza ,&nbsp;Oskar Modin ,&nbsp;Dag Lorick ,&nbsp;Susanne Tumlin ,&nbsp;Britt-Marie Wilén","doi":"10.1016/j.biortech.2025.132624","DOIUrl":null,"url":null,"abstract":"<div><div>Aerobic granular sludge (AGS) operated with pre-settled wastewater enables separation of organics with high biomethane potential. However, organic compounds are also needed to support denitrification, and external carbon may be needed to achieve low effluent nitrogen concentrations. This study evaluated the impact of primary sedimentation on carbon management in AGS processes. A pilot-scale reactor reached effluent nitrate concentrations of 2–3 mg NO<sub>3</sub>-N/L when fed with pre-settled wastewater with the addition of 0.8 ± 0.2 g COD/g N as methanol in the post-denitrification phase, or when fed with raw wastewater without an external carbon source. The biogas potential of the whole process was 25 % higher with primary sedimentation. A sustainability assessment showed that the benefits of increased biogas production with primary sedimentation could outweigh the drawbacks associated with the use of methanol as external carbon source both in terms of economy and CO<sub>2</sub> emissions, but methane price and biogas yield affect the assessment.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"431 ","pages":"Article 132624"},"PeriodicalIF":9.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable carbon management in aerobic granular sludge for municipal wastewater treatment\",\"authors\":\"Therese Areskoug ,&nbsp;Johanna Arita Mendoza ,&nbsp;Oskar Modin ,&nbsp;Dag Lorick ,&nbsp;Susanne Tumlin ,&nbsp;Britt-Marie Wilén\",\"doi\":\"10.1016/j.biortech.2025.132624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aerobic granular sludge (AGS) operated with pre-settled wastewater enables separation of organics with high biomethane potential. However, organic compounds are also needed to support denitrification, and external carbon may be needed to achieve low effluent nitrogen concentrations. This study evaluated the impact of primary sedimentation on carbon management in AGS processes. A pilot-scale reactor reached effluent nitrate concentrations of 2–3 mg NO<sub>3</sub>-N/L when fed with pre-settled wastewater with the addition of 0.8 ± 0.2 g COD/g N as methanol in the post-denitrification phase, or when fed with raw wastewater without an external carbon source. The biogas potential of the whole process was 25 % higher with primary sedimentation. A sustainability assessment showed that the benefits of increased biogas production with primary sedimentation could outweigh the drawbacks associated with the use of methanol as external carbon source both in terms of economy and CO<sub>2</sub> emissions, but methane price and biogas yield affect the assessment.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"431 \",\"pages\":\"Article 132624\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852425005905\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425005905","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

好氧颗粒污泥(AGS)与预沉淀废水一起运行,可以分离具有高生物甲烷潜力的有机物。然而,也需要有机化合物来支持反硝化,并且可能需要外部碳来实现低出水氮浓度。本研究评估了原生沉积对AGS过程碳管理的影响。中试反应器在反硝化后阶段使用预沉淀废水加0.8±0.2 g COD/g N作为甲醇,或使用未添加外部碳源的原废水,出水硝酸盐浓度可达2-3 mg NO3-N/L。经过初次沉淀,整个工艺的沼气潜力提高了25%。一项可持续性评估表明,在经济和二氧化碳排放方面,增加初次沉积沼气产量的好处可能超过使用甲醇作为外部碳源的缺点,但甲烷价格和沼气产量影响了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sustainable carbon management in aerobic granular sludge for municipal wastewater treatment

Sustainable carbon management in aerobic granular sludge for municipal wastewater treatment
Aerobic granular sludge (AGS) operated with pre-settled wastewater enables separation of organics with high biomethane potential. However, organic compounds are also needed to support denitrification, and external carbon may be needed to achieve low effluent nitrogen concentrations. This study evaluated the impact of primary sedimentation on carbon management in AGS processes. A pilot-scale reactor reached effluent nitrate concentrations of 2–3 mg NO3-N/L when fed with pre-settled wastewater with the addition of 0.8 ± 0.2 g COD/g N as methanol in the post-denitrification phase, or when fed with raw wastewater without an external carbon source. The biogas potential of the whole process was 25 % higher with primary sedimentation. A sustainability assessment showed that the benefits of increased biogas production with primary sedimentation could outweigh the drawbacks associated with the use of methanol as external carbon source both in terms of economy and CO2 emissions, but methane price and biogas yield affect the assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信