温度依赖动力学和对丙烯醇和羟基自由基之间反应的气相产物的见解

IF 4.2 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Reem Al Mawla , Cécile Cœur , Nicolas Houzel , Sylvain Billet , Vincent Gaudion , Manolis N. Romanias
{"title":"温度依赖动力学和对丙烯醇和羟基自由基之间反应的气相产物的见解","authors":"Reem Al Mawla ,&nbsp;Cécile Cœur ,&nbsp;Nicolas Houzel ,&nbsp;Sylvain Billet ,&nbsp;Vincent Gaudion ,&nbsp;Manolis N. Romanias","doi":"10.1016/j.atmosenv.2025.121260","DOIUrl":null,"url":null,"abstract":"<div><div>Unsaturated alcohols with two functional groups (C=C and OH), such as prenol, are gaining attention as potential second-generation biofuels. As demand for sustainable energy sources grows, increased use of prenol in biofuel applications could lead to additional atmospheric emissions contributing to secondary pollution and affecting air quality. As the OH radical is the major oxidant during daytime and is highly reactive toward organic compounds, the OH-initiated oxidation of prenol needs to be investigated. Therefore, the reaction of prenol with OH was studied in the atmospheric simulation chamber THALAMOS (THermally Regulated Atmospheric Simulation Chamber), under atmospheric pressure and in the temperature range 273–353 K. The temperature-dependent rate coefficient, measured by the relative method, follows the Arrhenius equation: <span><math><mrow><msub><mi>k</mi><mrow><mtext>prenol</mtext><mo>+</mo><mtext>OH</mtext><mspace></mspace></mrow></msub><mrow><mo>(</mo><mrow><mn>273</mn><mo>−</mo><mn>353</mn><mspace></mspace><mi>K</mi></mrow><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><mn>1.43</mn><mo>±</mo><mn>0.28</mn></mrow><mo>)</mo></mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup><mo>×</mo><mi>exp</mi><mrow><mo>(</mo><mfrac><mrow><mn>691</mn><mspace></mspace><mo>±</mo><mspace></mspace><mn>59</mn></mrow><mi>T</mi></mfrac><mo>)</mo></mrow></mrow></math></span> cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup>. Our results were combined with literature data determined under combustion relevant temperatures, to provide the following expression: <span><math><mrow><msub><mi>k</mi><mrow><mtext>prenol</mtext><mo>+</mo><mtext>OH</mtext><mspace></mspace></mrow></msub><mrow><mo>(</mo><mrow><mn>273</mn><mo>−</mo><mn>1290</mn><mspace></mspace><mi>K</mi></mrow><mo>)</mo></mrow><mo>=</mo><mn>1.46</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn><mspace></mspace></mrow></msup></mrow></math></span> <span><math><mrow><mo>×</mo><msup><mrow><mo>(</mo><mfrac><mi>T</mi><mn>300</mn></mfrac><mo>)</mo></mrow><mrow><mo>−</mo><mn>2.18</mn></mrow></msup></mrow></math></span> + 1.14 <span><math><mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn><mspace></mspace></mrow></msup></mrow></math></span> <span><math><mrow><mo>×</mo><mi>exp</mi><mrow><mo>(</mo><mfrac><mrow><mo>−</mo><mn>2961</mn></mrow><mi>T</mi></mfrac><mo>)</mo></mrow></mrow></math></span> cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup> which covers a wide range of temperatures under atmospheric, but also cold (273–353 K) and traditional combustion conditions (900–1290 K). In addition to kinetic measurements, the reaction mechanism was investigated through product analysis. The major oxidation products, formed predominantly via the OH addition pathway, were acetone with a yield of 97 %, glycolaldehyde, and formaldehyde, with minor traces of 2-hydroxy-2-methylpropanal. The H-atom abstraction was found to be less significant (&lt;3 %), leading primarily to the formation of prenal. These findings were further supported by structure–activity relationship(SAR) calculations, which estimated the rate coefficient at room temperature and confirmed that the reaction proceeds mainly (∼97 %) via OH addition to the C=C double bond of prenol. To our knowledge, this work is the first determination of the Arrhenius equation over the temperature range 273–353 K for the reaction between prenol and hydroxyl radical.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"354 ","pages":"Article 121260"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature dependent kinetics and insights on the gas-phase products of the reaction between prenol and hydroxyl radicals\",\"authors\":\"Reem Al Mawla ,&nbsp;Cécile Cœur ,&nbsp;Nicolas Houzel ,&nbsp;Sylvain Billet ,&nbsp;Vincent Gaudion ,&nbsp;Manolis N. Romanias\",\"doi\":\"10.1016/j.atmosenv.2025.121260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unsaturated alcohols with two functional groups (C=C and OH), such as prenol, are gaining attention as potential second-generation biofuels. As demand for sustainable energy sources grows, increased use of prenol in biofuel applications could lead to additional atmospheric emissions contributing to secondary pollution and affecting air quality. As the OH radical is the major oxidant during daytime and is highly reactive toward organic compounds, the OH-initiated oxidation of prenol needs to be investigated. Therefore, the reaction of prenol with OH was studied in the atmospheric simulation chamber THALAMOS (THermally Regulated Atmospheric Simulation Chamber), under atmospheric pressure and in the temperature range 273–353 K. The temperature-dependent rate coefficient, measured by the relative method, follows the Arrhenius equation: <span><math><mrow><msub><mi>k</mi><mrow><mtext>prenol</mtext><mo>+</mo><mtext>OH</mtext><mspace></mspace></mrow></msub><mrow><mo>(</mo><mrow><mn>273</mn><mo>−</mo><mn>353</mn><mspace></mspace><mi>K</mi></mrow><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><mn>1.43</mn><mo>±</mo><mn>0.28</mn></mrow><mo>)</mo></mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup><mo>×</mo><mi>exp</mi><mrow><mo>(</mo><mfrac><mrow><mn>691</mn><mspace></mspace><mo>±</mo><mspace></mspace><mn>59</mn></mrow><mi>T</mi></mfrac><mo>)</mo></mrow></mrow></math></span> cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup>. Our results were combined with literature data determined under combustion relevant temperatures, to provide the following expression: <span><math><mrow><msub><mi>k</mi><mrow><mtext>prenol</mtext><mo>+</mo><mtext>OH</mtext><mspace></mspace></mrow></msub><mrow><mo>(</mo><mrow><mn>273</mn><mo>−</mo><mn>1290</mn><mspace></mspace><mi>K</mi></mrow><mo>)</mo></mrow><mo>=</mo><mn>1.46</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn><mspace></mspace></mrow></msup></mrow></math></span> <span><math><mrow><mo>×</mo><msup><mrow><mo>(</mo><mfrac><mi>T</mi><mn>300</mn></mfrac><mo>)</mo></mrow><mrow><mo>−</mo><mn>2.18</mn></mrow></msup></mrow></math></span> + 1.14 <span><math><mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn><mspace></mspace></mrow></msup></mrow></math></span> <span><math><mrow><mo>×</mo><mi>exp</mi><mrow><mo>(</mo><mfrac><mrow><mo>−</mo><mn>2961</mn></mrow><mi>T</mi></mfrac><mo>)</mo></mrow></mrow></math></span> cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup> which covers a wide range of temperatures under atmospheric, but also cold (273–353 K) and traditional combustion conditions (900–1290 K). In addition to kinetic measurements, the reaction mechanism was investigated through product analysis. The major oxidation products, formed predominantly via the OH addition pathway, were acetone with a yield of 97 %, glycolaldehyde, and formaldehyde, with minor traces of 2-hydroxy-2-methylpropanal. The H-atom abstraction was found to be less significant (&lt;3 %), leading primarily to the formation of prenal. These findings were further supported by structure–activity relationship(SAR) calculations, which estimated the rate coefficient at room temperature and confirmed that the reaction proceeds mainly (∼97 %) via OH addition to the C=C double bond of prenol. To our knowledge, this work is the first determination of the Arrhenius equation over the temperature range 273–353 K for the reaction between prenol and hydroxyl radical.</div></div>\",\"PeriodicalId\":250,\"journal\":{\"name\":\"Atmospheric Environment\",\"volume\":\"354 \",\"pages\":\"Article 121260\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1352231025002353\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231025002353","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

具有两个官能团(C=C和OH)的不饱和醇,如戊醇,作为潜在的第二代生物燃料正受到关注。随着对可持续能源需求的增长,在生物燃料应用中增加使用丙烯醇可能导致额外的大气排放,造成二次污染并影响空气质量。由于OH自由基是白天的主要氧化剂,并且对有机化合物具有很强的反应性,因此需要研究OH引发的prenol氧化。因此,在大气模拟室THALAMOS(热调节大气模拟室)中,在常压下,在273-353 K的温度范围内,研究了prenol与OH的反应。用相对法测得的温度依赖速率系数符合Arrhenius方程:kprenol+OH(273−353K)=(1.43±0.28)×10−11×exp(691±59T) cm3分子−1 s−1。我们的结果与燃烧相关温度下的文献数据相结合,得到以下表达式:kprenol+OH(273−1290K)=1.46×10−10 ×(T300)−2.18 + 1.14 ×10−10 ×exp(−2961T) cm3分子−1 s−1,涵盖了大气温度范围,但也包括冷(273 - 353 K)和传统燃烧条件(900-1290 K)。除动力学测量外,还通过产物分析探讨了反应机理。主要的氧化产物是丙酮(产率为97%)、乙醇醛和甲醛,还有少量的2-羟基-2-甲基丙烷。发现h原子的抽离不太显著(< 3%),主要导致prenal的形成。这些发现进一步得到了构效关系(SAR)计算的支持,该计算估计了室温下的速率系数,并证实了反应主要(~ 97%)是通过OH加成于丙二醇的C=C双键进行的。据我们所知,这项工作是第一次在273-353 K温度范围内确定丙烯醇与羟基自由基反应的Arrhenius方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature dependent kinetics and insights on the gas-phase products of the reaction between prenol and hydroxyl radicals
Unsaturated alcohols with two functional groups (C=C and OH), such as prenol, are gaining attention as potential second-generation biofuels. As demand for sustainable energy sources grows, increased use of prenol in biofuel applications could lead to additional atmospheric emissions contributing to secondary pollution and affecting air quality. As the OH radical is the major oxidant during daytime and is highly reactive toward organic compounds, the OH-initiated oxidation of prenol needs to be investigated. Therefore, the reaction of prenol with OH was studied in the atmospheric simulation chamber THALAMOS (THermally Regulated Atmospheric Simulation Chamber), under atmospheric pressure and in the temperature range 273–353 K. The temperature-dependent rate coefficient, measured by the relative method, follows the Arrhenius equation: kprenol+OH(273353K)=(1.43±0.28)×1011×exp(691±59T) cm3 molecule−1 s−1. Our results were combined with literature data determined under combustion relevant temperatures, to provide the following expression: kprenol+OH(2731290K)=1.46×1010 ×(T300)2.18 + 1.14 ×1010 ×exp(2961T) cm3 molecule−1 s−1 which covers a wide range of temperatures under atmospheric, but also cold (273–353 K) and traditional combustion conditions (900–1290 K). In addition to kinetic measurements, the reaction mechanism was investigated through product analysis. The major oxidation products, formed predominantly via the OH addition pathway, were acetone with a yield of 97 %, glycolaldehyde, and formaldehyde, with minor traces of 2-hydroxy-2-methylpropanal. The H-atom abstraction was found to be less significant (<3 %), leading primarily to the formation of prenal. These findings were further supported by structure–activity relationship(SAR) calculations, which estimated the rate coefficient at room temperature and confirmed that the reaction proceeds mainly (∼97 %) via OH addition to the C=C double bond of prenol. To our knowledge, this work is the first determination of the Arrhenius equation over the temperature range 273–353 K for the reaction between prenol and hydroxyl radical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Environment
Atmospheric Environment 环境科学-环境科学
CiteScore
9.40
自引率
8.00%
发文量
458
审稿时长
53 days
期刊介绍: Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信