{"title":"具有聚氯乙烯复合材料增韧作用的核壳纳米树脂MWCNTs@acrylic的机械化学合成","authors":"Yuling Peng, Wei Wang, Jie Zhang, Jiang Li","doi":"10.1016/j.polymertesting.2025.108831","DOIUrl":null,"url":null,"abstract":"<div><div>Polyvinyl chloride (PVC) is inherently a brittle material, and enhancing its toughness while preserving its mechanical properties with minimal use of fillers remains a significant research challenge. In this paper, multi-walled carbon nanotubes (MWCNTs) coated with acrylic resin (ACR) were synthesized using a mechanochemical approach, and their effectiveness in toughening PVC was investigated. Firstly, methyl methacrylate (MMA) was grafted onto MWCNTs via atomic transfer radical polymerization to improve the compatibility between the MWCNTs and ACR. Subsequently, MWCNTs@ACR core-shell nanoparticles were prepared using a simple, environmentally friendly mechanochemical method. FTIR and TEM analyses confirmed the successful grafting and coating processes. The grafting efficiency of MMA was found to be 13.6 %, while the ACR coating efficiency was 22 %, as determined by TG. MWCNTs@ACR/PVC composites were then fabricated via compression molding, resulting in improved strength, and, notably, enhanced toughness. The impact strength of the composite was 592 % higher than that of PVC and 303 % higher than that of a simple MWCNTs/ACR/PVC blend, while maintaining the composite's strength. This improvement is attributed to the enhanced interfacial interaction between the MWCNTs and the PVC matrix, as well as the excellent dispersion of the MWCNTs within the matrix.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"147 ","pages":"Article 108831"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanochemical synthesis of core-shell MWCNTs@acrylic resin nanoparticles with toughening effect on PVC composites\",\"authors\":\"Yuling Peng, Wei Wang, Jie Zhang, Jiang Li\",\"doi\":\"10.1016/j.polymertesting.2025.108831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polyvinyl chloride (PVC) is inherently a brittle material, and enhancing its toughness while preserving its mechanical properties with minimal use of fillers remains a significant research challenge. In this paper, multi-walled carbon nanotubes (MWCNTs) coated with acrylic resin (ACR) were synthesized using a mechanochemical approach, and their effectiveness in toughening PVC was investigated. Firstly, methyl methacrylate (MMA) was grafted onto MWCNTs via atomic transfer radical polymerization to improve the compatibility between the MWCNTs and ACR. Subsequently, MWCNTs@ACR core-shell nanoparticles were prepared using a simple, environmentally friendly mechanochemical method. FTIR and TEM analyses confirmed the successful grafting and coating processes. The grafting efficiency of MMA was found to be 13.6 %, while the ACR coating efficiency was 22 %, as determined by TG. MWCNTs@ACR/PVC composites were then fabricated via compression molding, resulting in improved strength, and, notably, enhanced toughness. The impact strength of the composite was 592 % higher than that of PVC and 303 % higher than that of a simple MWCNTs/ACR/PVC blend, while maintaining the composite's strength. This improvement is attributed to the enhanced interfacial interaction between the MWCNTs and the PVC matrix, as well as the excellent dispersion of the MWCNTs within the matrix.</div></div>\",\"PeriodicalId\":20628,\"journal\":{\"name\":\"Polymer Testing\",\"volume\":\"147 \",\"pages\":\"Article 108831\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014294182500145X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014294182500145X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Mechanochemical synthesis of core-shell MWCNTs@acrylic resin nanoparticles with toughening effect on PVC composites
Polyvinyl chloride (PVC) is inherently a brittle material, and enhancing its toughness while preserving its mechanical properties with minimal use of fillers remains a significant research challenge. In this paper, multi-walled carbon nanotubes (MWCNTs) coated with acrylic resin (ACR) were synthesized using a mechanochemical approach, and their effectiveness in toughening PVC was investigated. Firstly, methyl methacrylate (MMA) was grafted onto MWCNTs via atomic transfer radical polymerization to improve the compatibility between the MWCNTs and ACR. Subsequently, MWCNTs@ACR core-shell nanoparticles were prepared using a simple, environmentally friendly mechanochemical method. FTIR and TEM analyses confirmed the successful grafting and coating processes. The grafting efficiency of MMA was found to be 13.6 %, while the ACR coating efficiency was 22 %, as determined by TG. MWCNTs@ACR/PVC composites were then fabricated via compression molding, resulting in improved strength, and, notably, enhanced toughness. The impact strength of the composite was 592 % higher than that of PVC and 303 % higher than that of a simple MWCNTs/ACR/PVC blend, while maintaining the composite's strength. This improvement is attributed to the enhanced interfacial interaction between the MWCNTs and the PVC matrix, as well as the excellent dispersion of the MWCNTs within the matrix.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.