Zahra Rezaei , Niyou Wang , Yipei Yang , Kannan Govindaraj , Jose Joaquin Velasco , Alvaro Dario Martinez Blanco , Nam Ho Bae , HeaYeon Lee , Su Ryon Shin
{"title":"用碳基纳米生物传感器增强类器官技术:进展、挑战和未来方向","authors":"Zahra Rezaei , Niyou Wang , Yipei Yang , Kannan Govindaraj , Jose Joaquin Velasco , Alvaro Dario Martinez Blanco , Nam Ho Bae , HeaYeon Lee , Su Ryon Shin","doi":"10.1016/j.addr.2025.115592","DOIUrl":null,"url":null,"abstract":"<div><div>Various carbon-based nanomaterials (CBNs) have been utilized to develop nano- and microscale biosensors that enable real-time and continuous monitoring of biochemical and biophysical changes in living biological systems. The integration of CBN-based biosensors into organoids has recently provided valuable insights into organoid development, disease modeling, and drug responses, enhancing their functionality and expanding their applications in diverse biomedical fields. These biosensors have been particularly transformative in studying neurological disorders, cardiovascular diseases, cancer progression, and liver toxicity, where precise, non-invasive monitoring is crucial for understanding pathophysiological mechanisms and assessing therapeutic efficacy. This review introduces intra- and extracellular biosensors incorporating CBNs such as graphene, carbon nanotubes (CNTs), graphene oxide (GO), reduced graphene oxide (rGO), carbon dots (CDs), and fullerenes. Additionally, it discusses strategies for improving the biocompatibility of CBN-based biosensors and minimizing their potential toxicity to ensure long-term organoid viability. Key challenges such as biosensor integration, data accuracy, and functional compatibility with specific organoid models are also addressed. Furthermore, this review highlights how CBN-based biosensors enhance the precision and relevance of organoid models in biomedical research, particularly in organ-specific applications such as brain-on-a-chip systems for neurodegenerative disease studies, liver-on-a-chip platforms for hepatotoxicity screening, and cardiac organoids for assessing cardiotoxicity in drug development. Finally, it explores how biosensing technologies could revolutionize personalized medicine by enabling high throughput drug screening, patient-specific disease modeling, and integrated sensing platforms for early diagnostics. By capturing current advancements and future directions, this review underscores the transformative potential of carbon-based nanotechnology in organoid research and its broader impact on medical science.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"222 ","pages":"Article 115592"},"PeriodicalIF":15.2000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing organoid technology with carbon-based nanomaterial biosensors: Advancements, challenges, and future directions\",\"authors\":\"Zahra Rezaei , Niyou Wang , Yipei Yang , Kannan Govindaraj , Jose Joaquin Velasco , Alvaro Dario Martinez Blanco , Nam Ho Bae , HeaYeon Lee , Su Ryon Shin\",\"doi\":\"10.1016/j.addr.2025.115592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Various carbon-based nanomaterials (CBNs) have been utilized to develop nano- and microscale biosensors that enable real-time and continuous monitoring of biochemical and biophysical changes in living biological systems. The integration of CBN-based biosensors into organoids has recently provided valuable insights into organoid development, disease modeling, and drug responses, enhancing their functionality and expanding their applications in diverse biomedical fields. These biosensors have been particularly transformative in studying neurological disorders, cardiovascular diseases, cancer progression, and liver toxicity, where precise, non-invasive monitoring is crucial for understanding pathophysiological mechanisms and assessing therapeutic efficacy. This review introduces intra- and extracellular biosensors incorporating CBNs such as graphene, carbon nanotubes (CNTs), graphene oxide (GO), reduced graphene oxide (rGO), carbon dots (CDs), and fullerenes. Additionally, it discusses strategies for improving the biocompatibility of CBN-based biosensors and minimizing their potential toxicity to ensure long-term organoid viability. Key challenges such as biosensor integration, data accuracy, and functional compatibility with specific organoid models are also addressed. Furthermore, this review highlights how CBN-based biosensors enhance the precision and relevance of organoid models in biomedical research, particularly in organ-specific applications such as brain-on-a-chip systems for neurodegenerative disease studies, liver-on-a-chip platforms for hepatotoxicity screening, and cardiac organoids for assessing cardiotoxicity in drug development. Finally, it explores how biosensing technologies could revolutionize personalized medicine by enabling high throughput drug screening, patient-specific disease modeling, and integrated sensing platforms for early diagnostics. By capturing current advancements and future directions, this review underscores the transformative potential of carbon-based nanotechnology in organoid research and its broader impact on medical science.</div></div>\",\"PeriodicalId\":7254,\"journal\":{\"name\":\"Advanced drug delivery reviews\",\"volume\":\"222 \",\"pages\":\"Article 115592\"},\"PeriodicalIF\":15.2000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced drug delivery reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169409X25000778\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced drug delivery reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169409X25000778","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Enhancing organoid technology with carbon-based nanomaterial biosensors: Advancements, challenges, and future directions
Various carbon-based nanomaterials (CBNs) have been utilized to develop nano- and microscale biosensors that enable real-time and continuous monitoring of biochemical and biophysical changes in living biological systems. The integration of CBN-based biosensors into organoids has recently provided valuable insights into organoid development, disease modeling, and drug responses, enhancing their functionality and expanding their applications in diverse biomedical fields. These biosensors have been particularly transformative in studying neurological disorders, cardiovascular diseases, cancer progression, and liver toxicity, where precise, non-invasive monitoring is crucial for understanding pathophysiological mechanisms and assessing therapeutic efficacy. This review introduces intra- and extracellular biosensors incorporating CBNs such as graphene, carbon nanotubes (CNTs), graphene oxide (GO), reduced graphene oxide (rGO), carbon dots (CDs), and fullerenes. Additionally, it discusses strategies for improving the biocompatibility of CBN-based biosensors and minimizing their potential toxicity to ensure long-term organoid viability. Key challenges such as biosensor integration, data accuracy, and functional compatibility with specific organoid models are also addressed. Furthermore, this review highlights how CBN-based biosensors enhance the precision and relevance of organoid models in biomedical research, particularly in organ-specific applications such as brain-on-a-chip systems for neurodegenerative disease studies, liver-on-a-chip platforms for hepatotoxicity screening, and cardiac organoids for assessing cardiotoxicity in drug development. Finally, it explores how biosensing technologies could revolutionize personalized medicine by enabling high throughput drug screening, patient-specific disease modeling, and integrated sensing platforms for early diagnostics. By capturing current advancements and future directions, this review underscores the transformative potential of carbon-based nanotechnology in organoid research and its broader impact on medical science.
期刊介绍:
The aim of the Journal is to provide a forum for the critical analysis of advanced drug and gene delivery systems and their applications in human and veterinary medicine. The Journal has a broad scope, covering the key issues for effective drug and gene delivery, from administration to site-specific delivery.
In general, the Journal publishes review articles in a Theme Issue format. Each Theme Issue provides a comprehensive and critical examination of current and emerging research on the design and development of advanced drug and gene delivery systems and their application to experimental and clinical therapeutics. The goal is to illustrate the pivotal role of a multidisciplinary approach to modern drug delivery, encompassing the application of sound biological and physicochemical principles to the engineering of drug delivery systems to meet the therapeutic need at hand. Importantly the Editorial Team of ADDR asks that the authors effectively window the extensive volume of literature, pick the important contributions and explain their importance, produce a forward looking identification of the challenges facing the field and produce a Conclusions section with expert recommendations to address the issues.