Xiangyu Shen , Waqar Ali Memon , Hanjian Lai , Yunpeng Wang , Shilong Xiong , Meihong Ou , Ruoxi Sun , Nan Zheng , Feng He
{"title":"二聚体受体中功能化π桥实现高性能有机太阳能电池","authors":"Xiangyu Shen , Waqar Ali Memon , Hanjian Lai , Yunpeng Wang , Shilong Xiong , Meihong Ou , Ruoxi Sun , Nan Zheng , Feng He","doi":"10.1016/j.nanoen.2025.111085","DOIUrl":null,"url":null,"abstract":"<div><div>The selection of suitable functional π-bridges is crucial for enhancing the performance of dimerized small molecular acceptors (DSMAs). In this work, we synthesized three DSMAs incorporating different π-bridges (DTY-V with a vinyl linker, DTY-A with an acetylene linker, and DTY-T with a thiophene linker), and investigated how π-bridge modifications influence their photovoltaic performance. Among them, DTY-A demonstrated the strongest light absorption, compact intermolecular packing, and the best donor-acceptor miscibility. These characteristics facilitated more efficient exciton dissociation and enhanced electron transport pathways within the active layer, leading to simultaneous improvements in both current density and fill factor. As a result, the quasiplanar heterojunction (Q-PHJ) device based on D18:DTY-A achieved an outstanding power conversion efficiency (PCE) of 18.30 % along with excellent illumination stability, retaining over 85 % of its initial efficiency after 1600 hours of light exposure. This study systematically compares the effects of three commonly used functional π-bridges on photovoltaic performance, providing valuable insights for the future design and optimization of dimerized acceptor molecular frameworks.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"141 ","pages":"Article 111085"},"PeriodicalIF":16.8000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionalized π-bridges in dimerized acceptors enable high-performance organic solar cells\",\"authors\":\"Xiangyu Shen , Waqar Ali Memon , Hanjian Lai , Yunpeng Wang , Shilong Xiong , Meihong Ou , Ruoxi Sun , Nan Zheng , Feng He\",\"doi\":\"10.1016/j.nanoen.2025.111085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The selection of suitable functional π-bridges is crucial for enhancing the performance of dimerized small molecular acceptors (DSMAs). In this work, we synthesized three DSMAs incorporating different π-bridges (DTY-V with a vinyl linker, DTY-A with an acetylene linker, and DTY-T with a thiophene linker), and investigated how π-bridge modifications influence their photovoltaic performance. Among them, DTY-A demonstrated the strongest light absorption, compact intermolecular packing, and the best donor-acceptor miscibility. These characteristics facilitated more efficient exciton dissociation and enhanced electron transport pathways within the active layer, leading to simultaneous improvements in both current density and fill factor. As a result, the quasiplanar heterojunction (Q-PHJ) device based on D18:DTY-A achieved an outstanding power conversion efficiency (PCE) of 18.30 % along with excellent illumination stability, retaining over 85 % of its initial efficiency after 1600 hours of light exposure. This study systematically compares the effects of three commonly used functional π-bridges on photovoltaic performance, providing valuable insights for the future design and optimization of dimerized acceptor molecular frameworks.</div></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"141 \",\"pages\":\"Article 111085\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285525004446\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525004446","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Functionalized π-bridges in dimerized acceptors enable high-performance organic solar cells
The selection of suitable functional π-bridges is crucial for enhancing the performance of dimerized small molecular acceptors (DSMAs). In this work, we synthesized three DSMAs incorporating different π-bridges (DTY-V with a vinyl linker, DTY-A with an acetylene linker, and DTY-T with a thiophene linker), and investigated how π-bridge modifications influence their photovoltaic performance. Among them, DTY-A demonstrated the strongest light absorption, compact intermolecular packing, and the best donor-acceptor miscibility. These characteristics facilitated more efficient exciton dissociation and enhanced electron transport pathways within the active layer, leading to simultaneous improvements in both current density and fill factor. As a result, the quasiplanar heterojunction (Q-PHJ) device based on D18:DTY-A achieved an outstanding power conversion efficiency (PCE) of 18.30 % along with excellent illumination stability, retaining over 85 % of its initial efficiency after 1600 hours of light exposure. This study systematically compares the effects of three commonly used functional π-bridges on photovoltaic performance, providing valuable insights for the future design and optimization of dimerized acceptor molecular frameworks.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.