Andreas Damianou , Hannah B.L. Jones , Athina Grigoriou , Mohammed A. Akbor , Edward Jenkins , Philip D. Charles , Iolanda Vendrell , Simon Davis , Benedikt M. Kessler
{"title":"应用于USP30去泛素酶底物发现的综合近端泛素组学分析","authors":"Andreas Damianou , Hannah B.L. Jones , Athina Grigoriou , Mohammed A. Akbor , Edward Jenkins , Philip D. Charles , Iolanda Vendrell , Simon Davis , Benedikt M. Kessler","doi":"10.1016/j.chembiol.2025.04.004","DOIUrl":null,"url":null,"abstract":"<div><div>The growing interest in deubiquitinases (DUBs) as drug targets for modulating critical molecular pathways in disease is fueled by the discovery of their specific cellular roles. A crucial aspect of this fact is the identification of DUB substrates. While mass spectrometry-based proteomic methods can be used to study global changes in cellular ubiquitination following DUB activity perturbation, these datasets often include indirect and downstream ubiquitination events. To enrich for the direct substrates of DUB enzymes, we have developed a proximal-ubiquitome workflow that combines proximity labeling methodology (ascorbate peroxidase-2 [APEX2]) with subsequent ubiquitination enrichment based on the K-ε-GG motif. We applied this technology to identify altered ubiquitination events in the vicinity of the DUB ubiquitin-specific protease 30 (USP30) upon its inhibition. Our findings reveal ubiquitination events previously associated with USP30 on TOMM20 and FKBP8, as well as the candidate substrate LETM1, which is deubiquitinated in a USP30-dependent manner.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 5","pages":"Pages 736-751.e8"},"PeriodicalIF":6.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative proximal-ubiquitomics profiling for deubiquitinase substrate discovery applied to USP30\",\"authors\":\"Andreas Damianou , Hannah B.L. Jones , Athina Grigoriou , Mohammed A. Akbor , Edward Jenkins , Philip D. Charles , Iolanda Vendrell , Simon Davis , Benedikt M. Kessler\",\"doi\":\"10.1016/j.chembiol.2025.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing interest in deubiquitinases (DUBs) as drug targets for modulating critical molecular pathways in disease is fueled by the discovery of their specific cellular roles. A crucial aspect of this fact is the identification of DUB substrates. While mass spectrometry-based proteomic methods can be used to study global changes in cellular ubiquitination following DUB activity perturbation, these datasets often include indirect and downstream ubiquitination events. To enrich for the direct substrates of DUB enzymes, we have developed a proximal-ubiquitome workflow that combines proximity labeling methodology (ascorbate peroxidase-2 [APEX2]) with subsequent ubiquitination enrichment based on the K-ε-GG motif. We applied this technology to identify altered ubiquitination events in the vicinity of the DUB ubiquitin-specific protease 30 (USP30) upon its inhibition. Our findings reveal ubiquitination events previously associated with USP30 on TOMM20 and FKBP8, as well as the candidate substrate LETM1, which is deubiquitinated in a USP30-dependent manner.</div></div>\",\"PeriodicalId\":265,\"journal\":{\"name\":\"Cell Chemical Biology\",\"volume\":\"32 5\",\"pages\":\"Pages 736-751.e8\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451945625001278\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451945625001278","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Integrative proximal-ubiquitomics profiling for deubiquitinase substrate discovery applied to USP30
The growing interest in deubiquitinases (DUBs) as drug targets for modulating critical molecular pathways in disease is fueled by the discovery of their specific cellular roles. A crucial aspect of this fact is the identification of DUB substrates. While mass spectrometry-based proteomic methods can be used to study global changes in cellular ubiquitination following DUB activity perturbation, these datasets often include indirect and downstream ubiquitination events. To enrich for the direct substrates of DUB enzymes, we have developed a proximal-ubiquitome workflow that combines proximity labeling methodology (ascorbate peroxidase-2 [APEX2]) with subsequent ubiquitination enrichment based on the K-ε-GG motif. We applied this technology to identify altered ubiquitination events in the vicinity of the DUB ubiquitin-specific protease 30 (USP30) upon its inhibition. Our findings reveal ubiquitination events previously associated with USP30 on TOMM20 and FKBP8, as well as the candidate substrate LETM1, which is deubiquitinated in a USP30-dependent manner.
Cell Chemical BiologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍:
Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.