非常规相非贵金属合金纳米结构界面水结构调制用于中性介质中硝酸盐高效电还原制氨

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yunhao Wang, Fengkun Hao, Hongming Xu, Mingzi Sun, Xixi Wang, Yuecheng Xiong, Jingwen Zhou, Fu Liu, Yubing Hu, Yangbo Ma, Xiang Meng, Liang Guo, Chaohui Wang, Mingzheng Shao, Guozhi Wang, Juan Wang, Pengyi Lu, Jinwen Yin, Jie Wang, Prof. Wenxin Niu, Prof. Chenliang Ye, Prof. Qinghua Zhang, Prof. Shibo Xi, Prof. Bolong Huang, Prof. Minhua Shao, Prof. Zhanxi Fan
{"title":"非常规相非贵金属合金纳米结构界面水结构调制用于中性介质中硝酸盐高效电还原制氨","authors":"Yunhao Wang,&nbsp;Fengkun Hao,&nbsp;Hongming Xu,&nbsp;Mingzi Sun,&nbsp;Xixi Wang,&nbsp;Yuecheng Xiong,&nbsp;Jingwen Zhou,&nbsp;Fu Liu,&nbsp;Yubing Hu,&nbsp;Yangbo Ma,&nbsp;Xiang Meng,&nbsp;Liang Guo,&nbsp;Chaohui Wang,&nbsp;Mingzheng Shao,&nbsp;Guozhi Wang,&nbsp;Juan Wang,&nbsp;Pengyi Lu,&nbsp;Jinwen Yin,&nbsp;Jie Wang,&nbsp;Prof. Wenxin Niu,&nbsp;Prof. Chenliang Ye,&nbsp;Prof. Qinghua Zhang,&nbsp;Prof. Shibo Xi,&nbsp;Prof. Bolong Huang,&nbsp;Prof. Minhua Shao,&nbsp;Prof. Zhanxi Fan","doi":"10.1002/anie.202508617","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic nitrate reduction reaction (NO<sub>3</sub>RR) has been recognized as a sustainable route for nitrate removal and value-added ammonia (NH<sub>3</sub>) synthesis. Regulating the surface active hydrogen (*H) behavior is crucial but remains a formidable challenge, especially in neutral electrolytes, greatly limiting the highly selective NH<sub>3</sub> formation. Herein, we report the controlled synthesis of heterophase hcp/fcc non-precious CuNi alloy nanostructures for efficient NH<sub>3</sub> electrosynthesis in neutral media. Significantly, hcp/fcc Cu<sub>10</sub>Ni<sub>90</sub> exhibits excellent performance with NH<sub>3</sub> Faradaic efficiency and yield rate of 98.1% and 57.4 mg h<sup>−1</sup> mg<sub>cat</sub><sup>−1</sup>, respectively. In situ studies suggest that the high proportion of interfacial K<sup>+</sup> ion hydrated water (K<sup>+</sup>–H<sub>2</sub>O) on hcp/fcc Cu<sub>10</sub>Ni<sub>90</sub> creates high *H coverage via boosting interfacial water dissociation, enabling the rapid hydrogenation kinetics for NH<sub>3</sub> synthesis. Theoretical calculations reveal that the superior NO<sub>3</sub>RR performance of hcp/fcc Cu<sub>10</sub>Ni<sub>90</sub> originates from both the existence of hcp phase to improve the electroactivity and the high Ni content to guarantee an efficient active hydrogen supply. The strong interaction between Ni and Cu also optimizes the electronic structures of Cu sites to realize fast intermediate conversions with low energy barriers. This work provides a novel strategy to optimize surface *H behavior via tuning interfacial water structure by crystal phase control.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 28","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial Water Structure Modulation on Unconventional Phase Non-Precious Metal Alloy Nanostructures for Efficient Nitrate Electroreduction to Ammonia in Neutral Media\",\"authors\":\"Yunhao Wang,&nbsp;Fengkun Hao,&nbsp;Hongming Xu,&nbsp;Mingzi Sun,&nbsp;Xixi Wang,&nbsp;Yuecheng Xiong,&nbsp;Jingwen Zhou,&nbsp;Fu Liu,&nbsp;Yubing Hu,&nbsp;Yangbo Ma,&nbsp;Xiang Meng,&nbsp;Liang Guo,&nbsp;Chaohui Wang,&nbsp;Mingzheng Shao,&nbsp;Guozhi Wang,&nbsp;Juan Wang,&nbsp;Pengyi Lu,&nbsp;Jinwen Yin,&nbsp;Jie Wang,&nbsp;Prof. Wenxin Niu,&nbsp;Prof. Chenliang Ye,&nbsp;Prof. Qinghua Zhang,&nbsp;Prof. Shibo Xi,&nbsp;Prof. Bolong Huang,&nbsp;Prof. Minhua Shao,&nbsp;Prof. Zhanxi Fan\",\"doi\":\"10.1002/anie.202508617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrocatalytic nitrate reduction reaction (NO<sub>3</sub>RR) has been recognized as a sustainable route for nitrate removal and value-added ammonia (NH<sub>3</sub>) synthesis. Regulating the surface active hydrogen (*H) behavior is crucial but remains a formidable challenge, especially in neutral electrolytes, greatly limiting the highly selective NH<sub>3</sub> formation. Herein, we report the controlled synthesis of heterophase hcp/fcc non-precious CuNi alloy nanostructures for efficient NH<sub>3</sub> electrosynthesis in neutral media. Significantly, hcp/fcc Cu<sub>10</sub>Ni<sub>90</sub> exhibits excellent performance with NH<sub>3</sub> Faradaic efficiency and yield rate of 98.1% and 57.4 mg h<sup>−1</sup> mg<sub>cat</sub><sup>−1</sup>, respectively. In situ studies suggest that the high proportion of interfacial K<sup>+</sup> ion hydrated water (K<sup>+</sup>–H<sub>2</sub>O) on hcp/fcc Cu<sub>10</sub>Ni<sub>90</sub> creates high *H coverage via boosting interfacial water dissociation, enabling the rapid hydrogenation kinetics for NH<sub>3</sub> synthesis. Theoretical calculations reveal that the superior NO<sub>3</sub>RR performance of hcp/fcc Cu<sub>10</sub>Ni<sub>90</sub> originates from both the existence of hcp phase to improve the electroactivity and the high Ni content to guarantee an efficient active hydrogen supply. The strong interaction between Ni and Cu also optimizes the electronic structures of Cu sites to realize fast intermediate conversions with low energy barriers. This work provides a novel strategy to optimize surface *H behavior via tuning interfacial water structure by crystal phase control.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 28\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202508617\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202508617","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电催化硝酸还原反应(NO3RR)被认为是一种可持续的硝酸盐脱除和氨合成途径。调节表面活性氢(*H)行为至关重要,但仍然是一个艰巨的挑战,特别是在中性电解质中,极大地限制了高选择性NH3的形成。在此,我们报道了在中性介质中用于高效NH3电合成的异相hcp/fcc非贵重CuNi合金纳米结构的受控合成。hcp/fcc Cu10Ni90表现出优异的反应性能,NH3法拉第效率为98.1%,产率为57.4 mg h-1 mgcat-1。原位研究表明,hcp/fcc Cu10Ni90上高比例的界面K+离子水合水(K+-H2O)通过促进界面水解离产生高*H覆盖率,实现了NH3合成的快速加氢动力学。理论计算表明,hcp/fcc Cu10Ni90具有优异的NO3RR性能,一方面是因为hcp相的存在提高了电活性,另一方面是因为高的Ni含量保证了高效的活性氢供应。Ni和Cu之间的强相互作用也优化了Cu位的电子结构,实现了低能垒的快速中间转化。本研究提供了一种通过晶体相位控制调节界面水结构来优化表面*H行为的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interfacial Water Structure Modulation on Unconventional Phase Non-Precious Metal Alloy Nanostructures for Efficient Nitrate Electroreduction to Ammonia in Neutral Media

Interfacial Water Structure Modulation on Unconventional Phase Non-Precious Metal Alloy Nanostructures for Efficient Nitrate Electroreduction to Ammonia in Neutral Media

Electrocatalytic nitrate reduction reaction (NO3RR) has been recognized as a sustainable route for nitrate removal and value-added ammonia (NH3) synthesis. Regulating the surface active hydrogen (*H) behavior is crucial but remains a formidable challenge, especially in neutral electrolytes, greatly limiting the highly selective NH3 formation. Herein, we report the controlled synthesis of heterophase hcp/fcc non-precious CuNi alloy nanostructures for efficient NH3 electrosynthesis in neutral media. Significantly, hcp/fcc Cu10Ni90 exhibits excellent performance with NH3 Faradaic efficiency and yield rate of 98.1% and 57.4 mg h−1 mgcat−1, respectively. In situ studies suggest that the high proportion of interfacial K+ ion hydrated water (K+–H2O) on hcp/fcc Cu10Ni90 creates high *H coverage via boosting interfacial water dissociation, enabling the rapid hydrogenation kinetics for NH3 synthesis. Theoretical calculations reveal that the superior NO3RR performance of hcp/fcc Cu10Ni90 originates from both the existence of hcp phase to improve the electroactivity and the high Ni content to guarantee an efficient active hydrogen supply. The strong interaction between Ni and Cu also optimizes the electronic structures of Cu sites to realize fast intermediate conversions with low energy barriers. This work provides a novel strategy to optimize surface *H behavior via tuning interfacial water structure by crystal phase control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信