GelGenie:用于凝胶电泳图像分析的人工智能框架

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Matthew Aquilina, Nathan J. W. Wu, Kiros Kwan, Filip Bušić, James Dodd, Laura Nicolás-Sáenz, Alan O’Callaghan, Peter Bankhead, Katherine E. Dunn
{"title":"GelGenie:用于凝胶电泳图像分析的人工智能框架","authors":"Matthew Aquilina, Nathan J. W. Wu, Kiros Kwan, Filip Bušić, James Dodd, Laura Nicolás-Sáenz, Alan O’Callaghan, Peter Bankhead, Katherine E. Dunn","doi":"10.1038/s41467-025-59189-0","DOIUrl":null,"url":null,"abstract":"<p>Gel electrophoresis is a ubiquitous laboratory method for the separation and semi-quantitative analysis of biomolecules. However, gel image analysis principles have barely advanced for decades, in stark contrast to other fields where AI has revolutionised data processing. Here, we show that an AI-based system can automatically identify gel bands in seconds for a wide range of experimental conditions, surpassing the capabilities of current software in both ease-of-use and versatility. We use a dataset containing 500+ images of manually-labelled gels to train various U-Nets to accurately identify bands through segmentation, i.e. classifying pixels as ‘band’ or ‘background’. When applied to gel electrophoresis data from other laboratories, our system generates results that quantitatively match those of the original authors. We have publicly released our models through GelGenie, an open-source application that allows users to extract bands from gel images on their own devices, with no expert knowledge or experience required.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"8 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GelGenie: an AI-powered framework for gel electrophoresis image analysis\",\"authors\":\"Matthew Aquilina, Nathan J. W. Wu, Kiros Kwan, Filip Bušić, James Dodd, Laura Nicolás-Sáenz, Alan O’Callaghan, Peter Bankhead, Katherine E. Dunn\",\"doi\":\"10.1038/s41467-025-59189-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gel electrophoresis is a ubiquitous laboratory method for the separation and semi-quantitative analysis of biomolecules. However, gel image analysis principles have barely advanced for decades, in stark contrast to other fields where AI has revolutionised data processing. Here, we show that an AI-based system can automatically identify gel bands in seconds for a wide range of experimental conditions, surpassing the capabilities of current software in both ease-of-use and versatility. We use a dataset containing 500+ images of manually-labelled gels to train various U-Nets to accurately identify bands through segmentation, i.e. classifying pixels as ‘band’ or ‘background’. When applied to gel electrophoresis data from other laboratories, our system generates results that quantitatively match those of the original authors. We have publicly released our models through GelGenie, an open-source application that allows users to extract bands from gel images on their own devices, with no expert knowledge or experience required.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59189-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59189-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

凝胶电泳是一种普遍应用于生物分子分离和半定量分析的实验室方法。然而,凝胶图像分析原理几十年来几乎没有进步,与人工智能彻底改变数据处理的其他领域形成鲜明对比。在这里,我们展示了一个基于人工智能的系统可以在几秒钟内自动识别各种实验条件下的凝胶带,在易用性和多功能性方面超过了当前软件的能力。我们使用包含500多个手工标记的凝胶图像的数据集来训练各种U-Nets,以便通过分割准确地识别波段,即将像素分类为“波段”或“背景”。当应用于其他实验室的凝胶电泳数据时,我们的系统产生的结果在数量上与原作者的结果相匹配。我们已经通过GelGenie公开发布了我们的模型,GelGenie是一个开源应用程序,允许用户在自己的设备上从凝胶图像中提取条带,不需要专业知识或经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GelGenie: an AI-powered framework for gel electrophoresis image analysis

GelGenie: an AI-powered framework for gel electrophoresis image analysis

Gel electrophoresis is a ubiquitous laboratory method for the separation and semi-quantitative analysis of biomolecules. However, gel image analysis principles have barely advanced for decades, in stark contrast to other fields where AI has revolutionised data processing. Here, we show that an AI-based system can automatically identify gel bands in seconds for a wide range of experimental conditions, surpassing the capabilities of current software in both ease-of-use and versatility. We use a dataset containing 500+ images of manually-labelled gels to train various U-Nets to accurately identify bands through segmentation, i.e. classifying pixels as ‘band’ or ‘background’. When applied to gel electrophoresis data from other laboratories, our system generates results that quantitatively match those of the original authors. We have publicly released our models through GelGenie, an open-source application that allows users to extract bands from gel images on their own devices, with no expert knowledge or experience required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信