T. V. Raziman, Anna Fischer, Riccardo Nori, Anthony Chan, Wai Kit Ng, Dhruv Saxena, Ortwin Hess, Korneel Molkens, Ivo Tanghe, Pieter Geiregat, Dries Van Thourhout, Mauricio Barahona, Riccardo Sapienza
{"title":"纳米激光器之间的相位延迟耦合单模发射","authors":"T. V. Raziman, Anna Fischer, Riccardo Nori, Anthony Chan, Wai Kit Ng, Dhruv Saxena, Ortwin Hess, Korneel Molkens, Ivo Tanghe, Pieter Geiregat, Dries Van Thourhout, Mauricio Barahona, Riccardo Sapienza","doi":"10.1021/acsphotonics.4c01230","DOIUrl":null,"url":null,"abstract":"Near-field coupling between nanolasers enables collective high-power lasing but leads to complex spectral reshaping and multimode operation, limiting the emission brightness, spatial coherence, and temporal stability. Many lasing architectures have been proposed to circumvent this limitation based on symmetries, topology, or interference. We show that a much simpler and robust method exploiting phase-delayed coupling, where light exchanged by the lasers carries a phase, can enable stable single-mode operation. Phase-delayed coupling changes the modal amplification: for pump powers close to the anyonic parity-time (PT) symmetric exceptional point, a high phase delay completely separates the mode thresholds, leading to single-mode operation. This is shown by stability analysis with nonlinear coupled mode theory and stochastic differential equations for two coupled nanolasers and confirmed by a realistic semianalytical treatment of a dimer of lasing nanospheres. Finally, we extend the mode control to large arrays of nanolasers featuring lowered thresholds and higher power. Our work promises a novel solution to engineer bright and stable single-mode lasing from nanolaser arrays with important applications in photonic chips for communication and LIDAR.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"19 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Mode Emission by Phase-Delayed Coupling Between Nanolasers\",\"authors\":\"T. V. Raziman, Anna Fischer, Riccardo Nori, Anthony Chan, Wai Kit Ng, Dhruv Saxena, Ortwin Hess, Korneel Molkens, Ivo Tanghe, Pieter Geiregat, Dries Van Thourhout, Mauricio Barahona, Riccardo Sapienza\",\"doi\":\"10.1021/acsphotonics.4c01230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near-field coupling between nanolasers enables collective high-power lasing but leads to complex spectral reshaping and multimode operation, limiting the emission brightness, spatial coherence, and temporal stability. Many lasing architectures have been proposed to circumvent this limitation based on symmetries, topology, or interference. We show that a much simpler and robust method exploiting phase-delayed coupling, where light exchanged by the lasers carries a phase, can enable stable single-mode operation. Phase-delayed coupling changes the modal amplification: for pump powers close to the anyonic parity-time (PT) symmetric exceptional point, a high phase delay completely separates the mode thresholds, leading to single-mode operation. This is shown by stability analysis with nonlinear coupled mode theory and stochastic differential equations for two coupled nanolasers and confirmed by a realistic semianalytical treatment of a dimer of lasing nanospheres. Finally, we extend the mode control to large arrays of nanolasers featuring lowered thresholds and higher power. Our work promises a novel solution to engineer bright and stable single-mode lasing from nanolaser arrays with important applications in photonic chips for communication and LIDAR.\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1021/acsphotonics.4c01230\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01230","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Single-Mode Emission by Phase-Delayed Coupling Between Nanolasers
Near-field coupling between nanolasers enables collective high-power lasing but leads to complex spectral reshaping and multimode operation, limiting the emission brightness, spatial coherence, and temporal stability. Many lasing architectures have been proposed to circumvent this limitation based on symmetries, topology, or interference. We show that a much simpler and robust method exploiting phase-delayed coupling, where light exchanged by the lasers carries a phase, can enable stable single-mode operation. Phase-delayed coupling changes the modal amplification: for pump powers close to the anyonic parity-time (PT) symmetric exceptional point, a high phase delay completely separates the mode thresholds, leading to single-mode operation. This is shown by stability analysis with nonlinear coupled mode theory and stochastic differential equations for two coupled nanolasers and confirmed by a realistic semianalytical treatment of a dimer of lasing nanospheres. Finally, we extend the mode control to large arrays of nanolasers featuring lowered thresholds and higher power. Our work promises a novel solution to engineer bright and stable single-mode lasing from nanolaser arrays with important applications in photonic chips for communication and LIDAR.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.