高性能磁光应用的双掺杂钙钛矿

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaoshan Wang, Pengpeng Cheng, Jian Zhou, Zehan Liu, Ruyan Kang, Xiaoxuan Li, Xian Zhao, Jia Zhao, Zhiyuan Zuo
{"title":"高性能磁光应用的双掺杂钙钛矿","authors":"Xiaoshan Wang,&nbsp;Pengpeng Cheng,&nbsp;Jian Zhou,&nbsp;Zehan Liu,&nbsp;Ruyan Kang,&nbsp;Xiaoxuan Li,&nbsp;Xian Zhao,&nbsp;Jia Zhao,&nbsp;Zhiyuan Zuo","doi":"10.1002/admt.202401373","DOIUrl":null,"url":null,"abstract":"<p>Perovskite magneto-optical (MO) materials are widely studied for the preparation of nonreciprocal photonic devices. Specifically, cubic perovskite materials exhibit significant MO effects in the visible light band. It is found that heavy element bismuth (Bi)-doped MAPbBr<sub>3</sub> can enhance spin-orbit coupling effects and generate defect energy levels. Essentially, this doping increases the probability of electronic transitions and alters the energy of electronic transitions, thereby enhancing the MO effect of perovskite. Here, the optimization approach is investigated for perovskite MO materials and prepare methylammonium lead bromide (MAPbBr<sub>3</sub>) films doped with varying concentrations of Bi ranging from 1–20% using the spray method. The experimental results of the Faraday rotation angle indicate that the 1% Bi-doped MAPbBr<sub>3</sub> film achieved a 61.3% performance improvement compared to the MO material terbium gallium garnet material at a wavelength of 650 nm. Such low-cost, easy-to-prepare, and high-quality perovskite films provide important insights for designing and fabricating high-integration nonreciprocal photonic devices.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"10 9","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi-Doped Perovskite for High-Performance Magnetic-Optical Applications\",\"authors\":\"Xiaoshan Wang,&nbsp;Pengpeng Cheng,&nbsp;Jian Zhou,&nbsp;Zehan Liu,&nbsp;Ruyan Kang,&nbsp;Xiaoxuan Li,&nbsp;Xian Zhao,&nbsp;Jia Zhao,&nbsp;Zhiyuan Zuo\",\"doi\":\"10.1002/admt.202401373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Perovskite magneto-optical (MO) materials are widely studied for the preparation of nonreciprocal photonic devices. Specifically, cubic perovskite materials exhibit significant MO effects in the visible light band. It is found that heavy element bismuth (Bi)-doped MAPbBr<sub>3</sub> can enhance spin-orbit coupling effects and generate defect energy levels. Essentially, this doping increases the probability of electronic transitions and alters the energy of electronic transitions, thereby enhancing the MO effect of perovskite. Here, the optimization approach is investigated for perovskite MO materials and prepare methylammonium lead bromide (MAPbBr<sub>3</sub>) films doped with varying concentrations of Bi ranging from 1–20% using the spray method. The experimental results of the Faraday rotation angle indicate that the 1% Bi-doped MAPbBr<sub>3</sub> film achieved a 61.3% performance improvement compared to the MO material terbium gallium garnet material at a wavelength of 650 nm. Such low-cost, easy-to-prepare, and high-quality perovskite films provide important insights for designing and fabricating high-integration nonreciprocal photonic devices.</p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admt.202401373\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202401373","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿磁光材料在制备非互易光子器件方面得到了广泛的研究。具体而言,立方钙钛矿材料在可见光波段表现出明显的MO效应。发现重元素铋(Bi)掺杂MAPbBr3可以增强自旋轨道耦合效应并产生缺陷能级。本质上,这种掺杂增加了电子跃迁的概率,改变了电子跃迁的能量,从而增强了钙钛矿的MO效应。本文研究了钙钛矿MO材料的优化方法,并采用喷雾法制备了掺杂铋浓度为1-20%的甲基溴化铅(MAPbBr3)薄膜。法拉第旋转角的实验结果表明,在650 nm波长处,掺1%铋的MAPbBr3薄膜比MO材料铽镓石榴石材料的性能提高了61.3%。这种低成本、易于制备和高质量的钙钛矿薄膜为设计和制造高集成非互易光子器件提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bi-Doped Perovskite for High-Performance Magnetic-Optical Applications

Bi-Doped Perovskite for High-Performance Magnetic-Optical Applications

Perovskite magneto-optical (MO) materials are widely studied for the preparation of nonreciprocal photonic devices. Specifically, cubic perovskite materials exhibit significant MO effects in the visible light band. It is found that heavy element bismuth (Bi)-doped MAPbBr3 can enhance spin-orbit coupling effects and generate defect energy levels. Essentially, this doping increases the probability of electronic transitions and alters the energy of electronic transitions, thereby enhancing the MO effect of perovskite. Here, the optimization approach is investigated for perovskite MO materials and prepare methylammonium lead bromide (MAPbBr3) films doped with varying concentrations of Bi ranging from 1–20% using the spray method. The experimental results of the Faraday rotation angle indicate that the 1% Bi-doped MAPbBr3 film achieved a 61.3% performance improvement compared to the MO material terbium gallium garnet material at a wavelength of 650 nm. Such low-cost, easy-to-prepare, and high-quality perovskite films provide important insights for designing and fabricating high-integration nonreciprocal photonic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信