高性能液滴摩擦电纳米发电机:设备配置和工作参数的比较

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kanokwan Chaithaweep, Utchawadee Pharino, Satana Pongampai, Sugato Hajra, Hoe Joon Kim, Thitirat Charoonsuk, Tosapol Maluangnont, Saichon Sriphan, Naratip Vittayakorn
{"title":"高性能液滴摩擦电纳米发电机:设备配置和工作参数的比较","authors":"Kanokwan Chaithaweep,&nbsp;Utchawadee Pharino,&nbsp;Satana Pongampai,&nbsp;Sugato Hajra,&nbsp;Hoe Joon Kim,&nbsp;Thitirat Charoonsuk,&nbsp;Tosapol Maluangnont,&nbsp;Saichon Sriphan,&nbsp;Naratip Vittayakorn","doi":"10.1002/admt.202401870","DOIUrl":null,"url":null,"abstract":"<p>Droplet-based electricity generators (DEGs) harness liquid-solid electrification to convert water droplets impacts into electrical energy. This study systematically examines how droplet height, droplet volume, flow rate, and substrate tilt angle influence DEG performance using polytetrafluoroethylene (PTFE) as a triboelectric layer and deionized water. Three electrode designs (double, top, bottom) are evaluated, revealing that the double-electrode configuration delivers the highest output. This enhanced performance arises from synergistic droplet motion, electrical double-layer formation, and charge discharge, as validated by an equivalent circuit model. By varying droplet heights from 1–20 cm, volumes of 7.7–50 µL, flow rates of 50–300 drops/min, and tilt angles of 0–90°, an optimized setup yields −70 V and 22 mA, translating to a power density of 0.28 µW cm<sup>−2</sup>. High-speed imaging correlates these outputs with droplet impact dynamics and the resulting charge transfer. Additionally, the optimized DEG can power small electronic devices, charge capacitors, and monitor artificial acid rain in real-time, displaying distinct electrical signals compared to typical rainwater. These findings underscore the potential of DEGs as renewable energy harvesters and smart environmental sensors, paving the way for advanced on-demand power generation in diverse settings.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"10 9","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Performance Droplet-Based Triboelectric Nanogenerators: A Comparison of Device Configuration and Operating Parameters\",\"authors\":\"Kanokwan Chaithaweep,&nbsp;Utchawadee Pharino,&nbsp;Satana Pongampai,&nbsp;Sugato Hajra,&nbsp;Hoe Joon Kim,&nbsp;Thitirat Charoonsuk,&nbsp;Tosapol Maluangnont,&nbsp;Saichon Sriphan,&nbsp;Naratip Vittayakorn\",\"doi\":\"10.1002/admt.202401870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Droplet-based electricity generators (DEGs) harness liquid-solid electrification to convert water droplets impacts into electrical energy. This study systematically examines how droplet height, droplet volume, flow rate, and substrate tilt angle influence DEG performance using polytetrafluoroethylene (PTFE) as a triboelectric layer and deionized water. Three electrode designs (double, top, bottom) are evaluated, revealing that the double-electrode configuration delivers the highest output. This enhanced performance arises from synergistic droplet motion, electrical double-layer formation, and charge discharge, as validated by an equivalent circuit model. By varying droplet heights from 1–20 cm, volumes of 7.7–50 µL, flow rates of 50–300 drops/min, and tilt angles of 0–90°, an optimized setup yields −70 V and 22 mA, translating to a power density of 0.28 µW cm<sup>−2</sup>. High-speed imaging correlates these outputs with droplet impact dynamics and the resulting charge transfer. Additionally, the optimized DEG can power small electronic devices, charge capacitors, and monitor artificial acid rain in real-time, displaying distinct electrical signals compared to typical rainwater. These findings underscore the potential of DEGs as renewable energy harvesters and smart environmental sensors, paving the way for advanced on-demand power generation in diverse settings.</p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admt.202401870\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202401870","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

液滴发电机(DEGs)利用液固电气化将水滴撞击转化为电能。本研究系统地研究了使用聚四氟乙烯(PTFE)作为摩擦电层和去离子水的液滴高度、液滴体积、流速和衬底倾斜角度如何影响DEG性能。三种电极设计(双,顶,底)进行评估,揭示双电极配置提供最高的输出。通过等效电路模型验证,这种增强的性能来自于协同液滴运动、电双层形成和充放电。通过改变液滴高度为1-20 cm,体积为7.7-50 μ L,流速为50-300滴/min,倾斜角度为0-90°,优化设置产生- 70 V和22 mA,转换为0.28 μ W cm - 2的功率密度。高速成像将这些输出与液滴冲击动力学和由此产生的电荷转移联系起来。此外,优化后的DEG可以为小型电子设备供电,为电容器充电,并实时监测人工酸雨,显示与典型雨水不同的电信号。这些发现强调了deg作为可再生能源收集器和智能环境传感器的潜力,为各种环境下先进的按需发电铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Performance Droplet-Based Triboelectric Nanogenerators: A Comparison of Device Configuration and Operating Parameters

High-Performance Droplet-Based Triboelectric Nanogenerators: A Comparison of Device Configuration and Operating Parameters

Droplet-based electricity generators (DEGs) harness liquid-solid electrification to convert water droplets impacts into electrical energy. This study systematically examines how droplet height, droplet volume, flow rate, and substrate tilt angle influence DEG performance using polytetrafluoroethylene (PTFE) as a triboelectric layer and deionized water. Three electrode designs (double, top, bottom) are evaluated, revealing that the double-electrode configuration delivers the highest output. This enhanced performance arises from synergistic droplet motion, electrical double-layer formation, and charge discharge, as validated by an equivalent circuit model. By varying droplet heights from 1–20 cm, volumes of 7.7–50 µL, flow rates of 50–300 drops/min, and tilt angles of 0–90°, an optimized setup yields −70 V and 22 mA, translating to a power density of 0.28 µW cm−2. High-speed imaging correlates these outputs with droplet impact dynamics and the resulting charge transfer. Additionally, the optimized DEG can power small electronic devices, charge capacitors, and monitor artificial acid rain in real-time, displaying distinct electrical signals compared to typical rainwater. These findings underscore the potential of DEGs as renewable energy harvesters and smart environmental sensors, paving the way for advanced on-demand power generation in diverse settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信